14666

Автор(ов): 

1

Параметры публикации
Тип публикации: 
Доклад
Название: 
Periodic Motions for Estimation of the Attraction Domain in the Wheeled Robot Stabilization Problem
Наименование конференции: 
18th IFAC World Congress (Milano, Italy, 2011)
Наименование источника: 
Proceedings of the 18th IFAC World Congress (Milano, 2011)
Город: 
Milan
Издательство: 
International Federation of Automatic Control (IFAC)
Год издания: 
2011
Страницы: 
5878-5883
Аннотация
Extremum properties of the two-dimensional linear time-varying (LTV) system are used in this paper to estimate boundary of the attraction domain in the problem of the wheeled robot control. To estimate the attraction domain of the nonlinear closed loop system, the Lyapunov function for the LTV system is constructed. A convex invariant function is known to exist at the boundary of the absolute stability region. For the second order case, the extremum trajectory, corresponding to the boundary of the absolute stability region, belongs to the level set of the invariant function. The periodic solution has finite number of switches on the period. It circumscribes the boundary of the attraction domain estimate. Two illustrative examples are considered.
Библиографическая ссылка: 
Рапопорт Л.Б. Periodic Motions for Estimation of the Attraction Domain in the Wheeled Robot Stabilization Problem / Proceedings of the 18th IFAC World Congress (Milano, 2011). Milano: International Federation of Automatic Control (IFAC), 2011. С. 5878-5883.