We use data on economic, management and political science journals to produce quantitative estimates of (in)consistency of evaluations based on seven popular bibliometric indicators (impact factor, 5-year impact factor, immediacy index, article influence score, h-index, SNIP and SJR). We propose a new approach to aggregating journal rankings: since rank aggregation is a multicriteria decision problem, ordinal ranking methods from social choice theory may solve it. We apply either a direct ranking method based on majority rule (the Copeland rule, the Markovian method) or a sorting procedure based on a tournament solution, such as the uncovered set and the minimal externally stable set. We demonstrate that aggregate rankings reduce the number of contradictions and represent the set of single-indicator-based rankings better than any of the seven rankings themselves.