48346

Автор(ов): 

1

Параметры публикации
Тип публикации: 
Доклад
Название: 
Semidefinite relaxation and new conditions of signdefinitness of quadratic forms under quadratic constraints
Электронная публикация: 
Да
ISBN/ISSN: 
978-1-5386-4556-7
DOI: 
10.1109/STAB.2018.8408391
Наименование конференции: 
2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB)
Наименование источника: 
Proceedings of the 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB-2018, Moscow)
Город: 
Москва
Издательство: 
IEEE
Год издания: 
2018
Страницы: 
1-3
Аннотация
In this paper we consider the problem of the sign-definiteness of a quadratic form (QF) under quadratic constraints. The use of semidefinite relaxation allows us to derive an S–procedure from duality conditions. However, the S–procedure, which gives necessary and sufficient conditions for sign-definiteness for the relaxed problem, gives only sufficient conditions for sign-definiteness for the initial problem if number of quadratic constraints is two or more. In this paper the new approach is proposed, allowing for establishing of conditional sign definiteness in some cases, when the S–procedure doesn’t give an answer. Results are illustrated by an example
Библиографическая ссылка: 
Рапопорт Л.Б. Semidefinite relaxation and new conditions of signdefinitness of quadratic forms under quadratic constraints / Proceedings of the 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB-2018, Moscow). М.: IEEE, 2018. С. 1-3.