СОДЕРЖАНИЕ

Предис	ловие редактора
Глав	а І. Основные понятия теории случайных процессов 1
	Случайные процессы и их вероятностные характеристики . 1 1.1. Определение случайного процесса (11). 1.2. Конечномерные распределения случайного процесса (13). 1.3. Теорема Колмогорова (17). 1.4. Моментные характеристики случайного процесса (21). 1.5. Задачи для самостоятельного решения (27).
§ 2.	Основные классы случайных процессов
Глав	а II. Случайные последовательности 5
	Стационарные случайные последовательности
	Линейные преобразования случайных последовательностей . 6. 4.1. Линейные преобразования последовательностей общего вида (65). 4.2. Линейные преобразования стационарных СП (70). 4.3. Линейное прогнозирование стационарных последовательностей (75). 4.4. Задачи для самостоятельного решения (81).
§ 5.	Цепи Маркова
	Разностные стохастические уравнения
	6.1. Модели авторегрессии и скользящего среднего (98). 6.2. Спектральные характеристики АРСС-последовательностей (103). 6.3. Многомерные разностные линейные стохастические уравнения (106). 6.4. Фильтр Калмана (110). 6.5. Нелинейная фильтрация марковских случайных последовательностей (117). 6.6. Алгоритмы субоптимальной нели-
	нейной фильтрации (122). 6.7. Задачи для самостоятельного решения (129).

§ 7. Мартингалы с дискретным временем	131
Глава III. Случайные функции	147
§ 8. Элементы анализа случайных функций	147
§ 9. Стационарные случайные функции	167
§ 10. Случайные функции с ортогональными и независимыми при-	
ращениями	188
§ 11. Стохастические дифференциальные уравнения	212
§ 12. Марковские случайные функции с дискретным множеством состояний	247
Глава IV. Математическое приложение	264
§ 13. Необходимые сведения из функционального анализа 13.1. Алгебры и σ-алгебры множеств (264). 13.2. Меры (определения и свойства) (265). 13.3. Способы задания мер (266). 13.4. Измеримые функции (270). 13.5. Интеграл Лебега (272). 13.6. Гильбертово пространство (279). 13.7. Ря-	264
ды Фурье в гильбертовом пространстве (282). 13.8. Ортого-	
нальное проектирование в гильбертовом пространстве (283).	

содержание 5

чайные величины и векторы (286). 14.3. Математическо
ожидание (290). 14.4. Последовательности случайных вели
чин (294). 14.5. Условное математическое ожидание (296)
14.6. Гауссовские случайные величины и векторы (299)
14.7. Гильбертово пространство случайных величин с ко-
нечным вторым моментом (301). 14.8. Ортогональная сто-
хастическая мера (303). 14.9. Стохастический интеграл по
ортогональной мере (305).
15. Вычисление специальных интегралов
15.1. Интеграл вероятностей (307). 15.2. Интегралы от дроб
но-рациональных функций (308).
сок литературы
дметный указатель

ПРЕДИСЛОВИЕ РЕДАКТОРА

В 1973 году на факультете прикладной математики Московского государственного авиационного института (технического университета) академиком В.С. Пугачевым была создана кафедра теории вероятностей и математической статистики. За прошедшее время на кафедре под научно-методическим руководством В.С. Пугачева были созданы и прочитаны оригинальные учебные курсы по таким дисциплинам, как «Теория вероятностей и математическая статистика», «Случайные процессы», «Математический анализ» и др. На суд читателя выносится серия учебных пособий по трем названным дисциплинам, которые отражают накопленный опыт преподавания этих дисциплин студентам технического университета МАИ, специализирующимся в области прикладной математики, радиоэлектроники, машиностроения и систем управления. Отличительной чертой данных пособий является максимально лаконичное изложение материала при достаточно полном описании современного состояния изучаемых предметов. Кроме того, значительную часть пособий занимают многочисленные примеры и задачи с решениями, что позволяет использовать эти пособия не только для чтения лекционных курсов, но и для проведения практических и лабораторных занятий. Структура изложения курсов такова, что эти пособия могут одновременно играть роль учебника, задачника и справочника. Поэтому пособия могут быть полезны как преподавателям и студентам, так и инженерам.

Проф., д.ф.-м.н. А.И. Кибзун

ПРЕДИСЛОВИЕ

Содержание данного учебного пособия отражает многолетний опыт преподавания студентам и аспирантам факультета прикладной математики Московского государственного авиационного института (технического университета) курса теории случайных процессов, в становлении которого решающая роль принадлежит академику РАН В.С. Пугачеву. При подготовке учебника авторы основывались на следующих базовых принципах:

- математически корректное изложение материала и обоснование всех методов, используемых для решения конкретных задач;
- иллюстрирование основных теоретических положений примерами различного уровня сложности;
- более подробное рассмотрение тех моделей случайных процессов, которые в настоящее время являются наиболее важными для решения прикладных задач.

В книге приведено значительное количество строгих определений и аккуратных формулировок теорем. Доказательства теорем можно найти в многочисленных учебниках по теории случайных процессов [2, 4, 10, 20–22, 25]. Для понимания основного материала достаточно знания курсов математического анализа, линейной алгебры и теории вероятностей в объемах, принятых для изучения в техническом университете. Для овладения материалом в полном объеме необходимо знакомство с основами функционального анализа (теория меры, интеграл Лебега, гильбертово пространство). Исчерпывающие сведения по теории вероятностей содержатся в учебниках [1,19,22,25] и справочнике [9], а по функциональному анализу — в [8,13,18].

Использование всех приведенных теоретических положений проиллюстрировано многочисленными примерами, снабженными подробными решениями. В наиболее важных примерах изучаются модели и методы исследования случайных процессов, на которых базируются эффективные алгоритмы обработки информации, принятия решений, анализа и прогнозирования реальных процессов в физических, биологических, сложных технических и экономических системах. В конце каждого параграфа приведены задачи для самостоятельного решения. Все задачи снабжены ответами, а наиболее сложные — указаниями к решению. Отметим также задачники [3,7], которые могут быть использованы для самостоятельной проработки материала.

Наконец, для изучения были отобраны те математические модели случайных процессов, которые имеют особое значение для постановки и решения прикладных задач в следующих областях:

— управление сложными системами [6, 15, 16, 23];

- управление движением летательных аппаратов [11];
- обработка измерительной информации [20, 24];
- исследование надежности систем [10];
- исследование операций и системный анализ [27];
- идентификация систем [12];
- системы массового обслуживания [5,27];
- математическая экономика и теория финансов [14,26,28].

Поэтому наряду со стандартными разделами курса (гауссовские процессы, стационарные процессы и их преобразования, цепи Маркова и др.) в книге присутствуют нетрадиционные разделы, посвященные стохастическому анализу, разностным и дифференциальным стохастическим уравнениям, оптимальному оцениванию, теории рекуррентной фильтрации Калмана—Бьюси, методам нелинейной фильтрации, теории мартингалов. Так, например, теория мартингалов эффективно используется в настоящее время для исследования и оптимизации процессов на финансовых рынках [26].

Книга состоит из четырех глав. В первой главе приведены основные определения и теоретические положения общего характера, необходимые для изучения остального материала, а также кратко описаны важнейшие типы случайных процессов, применяемых для решения прикладных задач.

Вторая глава посвящена случайным процессам с дискретным временем (случайным последовательностям). В последние годы значение этого класса случайных процессов повысилось в связи с тем, что на смену аналоговым методам обработки информации пришли цифровые методы, реализованные в виде компьютерных алгоритмов и программ.

В третьей главе книги изучаются случайные процессы с непрерывным временем (случайные функции). Модели таких процессов адекватно описывают движение механических систем в случайных средах, распространение радиосигналов, функционирование систем массового обслуживания, процессы изменения курсов ценных бумаг и многое другое.

Четвертая глава имеет справочный характер и содержит сведения по функциональному анализу и теории вероятностей, необходимые для изучения материала в полном объеме.

При подготовке рукописи книги мы постоянно пользовались советами и помощью наших коллег по кафедре «Теории вероятностей» Московского государственного авиационного института (технического университета) А.В. Борисова, А.В. Босова, Е.Н. Платонова и В.И. Синицына, которым мы выражаем искреннюю признательность. Авторы выражают особую благодарность К.В. Семенихину за работу по научному редактированию рукописи и подготовку оригинал-макета.

СПИСОК ОСНОВНЫХ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

- CB случайная величина или случайный вектор;
- ${\rm C}\Pi-{\rm c}$ лу чайная последовательность;
- СФ случайная функция;
- $CC\Pi$ стационарная $C\Pi$;
- $CC\Phi$ стационарная $C\Phi$;
- ЦМ цепь Маркова;
- AP авторегрессия;
- СС скользящее среднее;
- APCC авторегрессия-скользящее среднее;
- \mathbb{R}^1 множество вещественных чисел;
- \mathbb{R}^{n} n-мерное (вещественное) евклидово пространство;
- \mathbb{Z} множество целых чисел;
- С множество комплексных чисел;
- \overline{z} комплексное число, сопряженное к $z\in\mathbb{C};$
- $\operatorname{Re} z$ вещественная часть комплексного числа $z\in\mathbb{C};$
- A^* транспонированная матрица;
- A^{-1} обратная матрица;
- I единичная матрица;
- $\mathcal{B}(\mathbb{R}^n)$ σ -алгебра борелевских подмножеств пространства \mathbb{R}^n ;
- $\mathcal{B}([a,b]) \sigma$ -алгебра борелевских подмножеств промежутка [a,b];
- $I_{B}(x)$ индикатор (индикаторная функция) множества B;
- $\exp\{x\} = e^x$ экспонента;
- $f(x_0-) = \lim_{x \to \infty} f(x)$ предел слева
 - функции f(x) в точке x_0 ;
- $\operatorname*{arg\;min}_{x\in X}f(x)$ точка минимума фун
 - кции f(x) на множестве X;
- $\mu(B)$ мера μ множества B;
- $\mathcal{L}(N)$ линейная оболочка множества N;
- $\det[A]$ определитель матрицы A; tr[A] след матрицы A;

- $\pi_M(x)$ проекция элемента x на подпространство M;
- o(x) «o-малое», т. е. функция от x, такая, что $o(x)/x \to 0$ при $x \to 0$;
- $\delta(x)$ дельта-функция Дирака;
- $L_2[a,b]$ гильбертово пространство комплексных функций, интегрируемых с квадратом по мере Лебега на отрезке [a,b];
- Ω пространство элементарных событий (исходов) $\omega;$
- F σ-алгебра случайных событий (подмножеств Ω);
- $P\{A\}$ вероятность (вероятностная мера) события A;
- $\{\Omega, \mathcal{F}, \mathbf{P}\}$ основное вероятностное пространство;
- Ø невозможное событие (пустое множество);
- $F_{\xi}(x)$ функция распределения вероятностей СВ ξ ;
- $p_{\xi}(x)$ плотность распределения вероятностей СВ $\xi;$
- $m_{\xi} = \mathbf{M}\{\xi\}$ математическое ожидание (среднее) СВ ξ ;
- $D_{\xi} = \mathbf{D}\{\xi\}$ дисперсия СВ ξ ;
- $\mathbf{cov}\{\xi,\eta\}$ ковариация СВ ξ и η ;
- ξ центрированная СВ ξ ;
- $E(\lambda)$ экспоненциальное распределение с параметром λ ;
- $\mathcal{N}(m; D)$ гауссовское (нормальное) распределение со средним m и дисперсией (ковариационной матрицей) D;
- $\Phi(x)$ интеграл вероятностей (функция Лапласа);
- Н гильбертово пространство (центрированных) СВ с конечным вторым моментом;
- $\|\xi\| = \mathbf{M}\{|\xi|^2\}^{1/2}$ норма СВ ξ в \mathcal{H} ;

- (ξ, η) скалярное произведение СВ ξ и η в \mathcal{H} ;
- $\xi \perp \eta$ ортогональные CB ξ и η в \mathcal{H} ; $\mathcal{H}(\xi)$ гильбертово пространство, порожденное случайной последо-
- $\mathcal{F}^{\xi} = \sigma\{\xi\} \sigma$ -алгебра, порожденная СВ ξ ;

вательностью $\xi = \{\xi_n\};$

- $\mathcal{F}_t^{\xi} = \sigma\{\xi(s), s \leqslant t\} \sigma$ -алгебра, порожденная случайным процессом $\xi(s)$ до момента t;
- $\mathbf{M}\{\eta \mid \mathcal{G}\}$ условное математическое ожидание СВ η относительно σ -алгебры \mathcal{G} ;
- $\mathbf{M}\{\eta \mid \xi\} = \mathbf{M}\{\eta \mid \mathcal{F}^{\xi}\}$ условное математическое ожидание СВ η относительно СВ ξ ;
- $\mathbf{P}\{A \mid B\}$ условная вероятность случайного события A относительно случайного события B;
- $\{\xi_n,\,n\in\mathbb{Z}\}-\mathrm{C}\Pi,$ заданная на $\mathbb{Z};$
- $\{\xi(t),\,t\in T\}$ СФ, заданная на промежутке $T\subseteq\mathbb{R}^1$;
- $F_{\xi}(x_1,\ldots,x_n;\,t_1,\ldots,t_n)-n$ -мерная функция распределения случайного процесса $\xi(t)$;
- $p_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) n$ -мерная плотность распределения случайного процесса $\xi(t)$;
- $\Psi_{\xi}(\lambda_1, \dots, \lambda_n; t_1, \dots, t_n) n$ -мерная характеристическая функция случайного процесса $\xi(t)$;
- $m_{\xi}(t)$ математическое ожидание случайного процесса $\xi(t)$;
- $D_{\xi}(t)$ дисперсия случайного процесса $\xi(t)$;
- $R_{\xi}(t,s)$ ковариационная функция случайного процесса $\xi(t)$;
- $R_{\xi}(\tau)$ ковариационная функция стационарного процесса $\xi(t)$;
- $F_{\xi}(\lambda)$ спектральная функция стационарного процесса $\xi(t)$;
- $f_{\xi}(\lambda)$ спектральная плотность стационарного процесса $\xi(t)$;
- $\Phi(\lambda)$ частотная характеристика линейного стационарного преобразования;

- $Z_{\xi}(\Delta)$ ортогональная стохастическая мера, соответствующая стационарному процессу $\xi(t)$;
- $\hat{\xi}(t), \hat{\xi}_n$ оптимальные в среднем квадратическом (с.к.-оптимальные) оценки;
- $\left\langle \xi\right\rangle _{t}$ квадратическая характеристика мартингала $\xi;$
- P(s,x,t,B) переходная вероятность марковского процесса;
- $\mathsf{p}(s,x,t,y)$ переходная плотность марковского процесса;
- P(x,t,B) переходная вероятность однородного марковского пропесса;
- p(x,t,y) переходная плотность однородного марковского процесса;
- $p_{ij}(s,t)$ вероятность перехода ЦМ из i-го состояния в момент s в j-е состояние в момент t;
- p_{ij} вероятность перехода однородной ЦМ из i-го состояния в j-е состояние за один шаг;
- $P = \{p_{ij}\}$ переходная матрица однородной ЦМ;
- $\pi_i(t)$ вероятность i-го состояния ЦМ в момент t;
- w(t) винеровский процесс (процесс броуновского движения);
- $\Delta \xi(s,t) = \xi(t) \xi(s)$ приращение случайного процесса $\xi(t)$ на промежутке (s,t];
- $\xi_n \xrightarrow{\text{с.к.}} \xi$ среднеквадратическая сходимость (с.к.-сходимость);
- $\xi = \underset{n \to \infty}{\text{l.i.m.}} \xi_n$ среднеквадратический предел (с.к.-предел);
- $\dot{\xi}(t)$ среднеквадратическая производная (с.к.-производная);
- $(\mathbf{P}$ -п.н.) почти наверное (с вероятностью 1);
- $\xi_n \xrightarrow{\text{п.н.}} \xi$ сходимость (Р-п.н.);
- $\xi = \lim_{\substack{n \to \infty \ \text{ятностью 1.}}} \xi_n \; (\mathbf{P}\text{-п.н.}) \text{предел с веро-}$

ГЛАВА І

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ СЛУЧАЙНЫХ ПРОЦЕССОВ

В данной главе рассматриваются основные характеристики случайных последовательностей и случайных функций: конечномерные законы распределения и моментные характеристики. Во втором параграфе главы приводится краткое описание наиболее важных классов случайных процессов и обсуждаются их характерные особенности. Материал данной главы является базовым для более детального изучения случайных процессов в последующих главах.

§ 1. Случайные процессы и их вероятностные характеристики

1.1. Определение случайного процесса. Случайный процесс является математической моделью для описания случайных явлений, развивающихся во времени. При этом предполагается, что состояние процесса в текущий момент времени $t \in \mathbb{R}^1$ есть векторная или скалярная случайная величина $\xi(t,\omega)$. Пространство элементарных событий (исходов) Ω предполагается измеримым, т. е. на нем определена σ -алгебра его подмножеств \mathcal{F} . Кроме того, предполагается, что на измеримом пространстве $\{\Omega,\mathcal{F}\}$ задана вероятностная мера \mathbf{P} , т. е. для любого множества $A \in \mathcal{F}$ определена его вероятность $\mathbf{P}\{A\}$. Тем самым, задано вероятностное пространство $\{\Omega,\mathcal{F},\mathbf{P}\}$, и понятие случайного процесса определяется следующим образом.

Определение 1.1. Случайный процесс есть семейство (действительных или комплексных) случайных величин $\{\xi(t,\omega), t\in T\}$, определенных на $\{\Omega, \mathcal{F}, \mathbf{P}\}$, где множество параметров $T\subseteq \mathbb{R}^1$.

Замечание. Обычно, когда это не приводит к неясности, зависимость $\xi(t,\omega)$ от ω не указывается и случайный процесс обозначается просто $\xi(t)$.

О пределение 1.2. Пусть $t_0 \in T$ — фиксированный момент. Случайная величина $\xi_{t_0}(\omega) = \xi(t_0,\omega)$ называется сечением случайного процесса в точке $t_0 \in T$.

Далее мы будем рассматривать два типа случайных процессов. О пределение 1.3. Если переменная t пробегает дискретное множество значений, например, $t \in \mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, то случайный процесс $\xi(t)$ называется процессом c дискретным временем или случайной последовательностью, а если $t \in \mathbb{R}^1$ или $t \in [a,b]$, где $b \leq \infty$, то случайный процесс называется процессом c непрерывным временем или случайной функцией.

Определение 1.4. Процесс называется действительным или вещественным, если случайные величины $\xi(t,\omega)$ являются действительными для любого $t \in T$, и комплексным, если случайные величины $\xi(t,\omega)$ являются комплексными для любого $t \in T$.

Определение 1.5. При фиксированном $\omega_0 \in \Omega$ неслучайная функция $\xi_{\omega_0}(t) = \xi(t,\omega_0), \ t \in T$, называется траекторией, соответствующей элементарному исходу $\omega_0 \in \Omega$. Траектории называются также реализациями или выборочными функциями случайного процесса.

Замечание. Случайный процесс можно трактовать как совокупность сечений (см. определение 1.2) или как совокупность («пучок») траекторий (см. определение 1.5). В различных задачах используются оба эти описания.

О пределение 1.6. Случайная функция $\xi(t)$ называется регулярной, если ее траектории в каждой точке $t\in T$ непрерывны справа и имеют конечные пределы слева.

Рассмотрим некоторые примеры, поясняющие введенные выше определения.

 Π ример 1.1. Пусть случайный процесс $\xi(t)$ определен следующим образом:

$$\xi(t) = tX, \quad t \in [0, 1],$$

где $X \sim \mathcal{R}[0,1]$ — случайная величина, равномерно распределенная на отрезке [0,1]. Описать множество сечений и траекторий случайного процесса $\xi(t)$.

Решение. Случайный процесс $\xi(t)$ является случайной функцией. При фиксированном $t_0 \in [0,1]$ сечение $\xi_{t_0}(\omega) = t_0 X(\omega)$ является случайной величиной, имеющей равномерное распределение на отрезке $[0,t_0]$.

Траектории процесса $\xi(t)$, т.е. неслучайные функции $\xi_{\omega_0}(t) = X(\omega_0) t$, являются прямыми линиями, выходящими из точки (0,0) со случайным тангенсом угла наклона, равным $X(\omega_0)$. Случайная функция $\xi(t)$ регулярна, так как все ее траектории непрерывны.

 Π ример 1.2. Пусть $t \in [0, \infty)$, а случайная функция $\xi(t)$ задана следующим образом:

$$\xi(t) = U_n$$
 при $t \in [n, n+1), n = 0, 1, 2, \dots,$

где $\{U_n, n=0,1,2,\ldots\}$ — последовательность конечных случайных величин. Описать траектории случайного процесса $\xi(t)$. Является ли этот процесс регулярным?

Решение. Траектории процесса $\xi(t)$, $t\geqslant 0$ — кусочно постоянные функции, испытывающие разрывы в точках $t=n=0,1,2,\ldots$ По определению эти функции непрерывны справа и имеют пределы слева, равные $\lim_{t\uparrow n}\xi_\omega(t)=U_{n-1}(\omega)$ для всякого $\omega\in\Omega$. Поскольку $\mathbf{P}\{|U_{n-1}|<\infty\}=1$ по условию, то этот случайный процесс является регулярным.

1.2. Конечномерные распределения случайного процесса.

Определение 1.7. Пусть $\{\xi(t), t \in T\}$ — действительный случайный процесс и задано некоторое произвольное множество моментов времени $\{t_1, \ldots, t_n\} \subset T$. Соответствующий набор случайных величин $\xi(t_1), \ldots, \xi(t_n)$ имеет n-мерную функцию распределения

$$F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) = \mathbf{P}\{\xi(t_1) \leqslant x_1, \dots, \xi(t_n) \leqslant x_n\},$$
 (1.1)

которая в дальнейшем будет называться n-мерной функцией распределения случайного процесса ξ .

Совокупность функций (1.1) для различных $n=1,2,\ldots$ и всех возможных моментов времени $t_i\in T$ называется семейством конечномерных распределений случайного процесса ξ .

Определение 1.8. Если функция F_{ξ} допускает представление

$$F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\xi}(u_1, \dots, u_n; t_1, \dots, t_n) du_1 \dots du_n,$$

где $p_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n)$ — некоторая измеримая по Лебегу неотрицательная функция, такая, что

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} p_{\xi}(u_1, \dots, u_n; t_1, \dots, t_n) du_1 \dots du_n = 1,$$

то говорят, что функция распределения имеет плотность. Функция $p_{\xi}(x_1,\ldots,x_n;\,t_1,\ldots,t_n)$ называется n-мерной плотностью распределения процесса ξ .

Следующие примеры демонстрируют нахождение конечномерных функций распределения.

Пример 1.3. Пусть случайный процесс задан соотношением

$$\xi(t)=\varphi(t)U,\quad t\in[0,1],$$

где U — некоторая случайная величина с функцией распределения $F_U(x)$, а $\varphi(t)>0$. Найти семейство конечномерных распределений процесса ξ . Имеет ли его n-мерная функция распределения плотность?

Решение. В соответствии с определением 1.7

$$F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) = \mathbf{P}\{\xi(t_1) \leqslant x_1, \dots, \xi(t_n) \leqslant x_n\} =$$

$$= \mathbf{P}\{\varphi(t_i) \ U \leqslant x_i, \ i = 1, \dots, n\} = \mathbf{P}\left\{U \leqslant \frac{x_i}{\varphi(t_i)}, \ i = 1, \dots, n\right\} =$$

$$= \mathbf{P}\left\{U \leqslant \min_{i=1, \dots, n} \frac{x_i}{\varphi(t_i)}\right\} = F_U\left(\min_{i=1, \dots, n} \frac{x_i}{\varphi(t_i)}\right). \quad (1.2)$$

Если функция распределения $F_U(x)$ имеет плотность $p_U(x)$, то существует и плотность одномерного распределения случайного процесса $\xi(t)$, поскольку для n=1 из (1.2)

$$F_{\xi}(x; t) = F_{U}\left(\frac{x}{\varphi(t)}\right) = \int_{-\infty}^{x} \frac{1}{\varphi(t)} p_{U}\left(\frac{z}{\varphi(t)}\right) dz,$$

следовательно, $p_{\xi}(x;\,t)=rac{1}{arphi(t)}\,p_{\,U}igg(rac{x}{arphi(t)}igg).$

Однако при $n\geqslant 2$ n-мерная функция распределения не имеет плотности. Действительно, в силу определения процесса $\xi(t)$ для любых t_1,\ldots,t_n имеет место соотношение

$$\xi(t_1)/\varphi(t_1) = \ldots = \xi(t_n)/\varphi(t_n),$$

поэтому мера $F_{t_1,...,t_n}(dx_1,...,dx_n)$ в пространстве \mathbb{R}^n , соответствующая функции распределения (1.2), сосредоточена на прямой

$$S = \{x \in \mathbb{R}^n : x_1/\varphi(t_1) = \ldots = x_n/\varphi(t_n)\},\$$

имеющей нулевую лебегову меру. Следовательно, мера $F_{t_1,...,t_n}(\cdot)$ сингулярна по отношению к мере Лебега, и поэтому n-мерная плотность не существует, если $n \geqslant 2$.

Пример 1.4. Пусть X и Y — независимые случайные величины с функциями распределения $F_X(x)$ и $F_Y(y)$. Пусть $\{\xi(t),\ t\geqslant 0\}$ — случайный процесс, определенный соотношением $\xi(t)=Xt+Y$. Описать траектории данного процесса, найти семейство конечномерных функций распределения.

Решение. Выборочные функции этого процесса представляют собой прямые линии со случайным наклоном и случайным начальным условием при t=0. Одномерная функция распределения случайного

процесса $\xi(t)$ при t>0 имеет вид

$$F_{\xi}(x; t) = \mathbf{P}\{Xt + Y \leqslant x\} = \int_{-\infty}^{\infty} \mathbf{P}\{Xt + Y \leqslant x \mid Y = y\} dF_{Y}(y) =$$

$$= \int_{-\infty}^{\infty} \mathbf{P}\{Xt + y \leqslant x\} dF_{Y}(y) = \int_{-\infty}^{\infty} \mathbf{P}\{X \leqslant \frac{x - y}{t}\} dF_{Y}(y) =$$

$$= \int_{-\infty}^{\infty} F_{X}\left(\frac{x - y}{t}\right) dF_{Y}(y).$$

Если же t=0, то $F_{\xi}(x;t)=F_{Y}(x)$. Для n-мерной функции распределения, аналогично примеру 1.3, получаем

$$F_{\xi}(x_1, \ldots, x_n; t_1, \ldots, t_n) = \int_{-\infty}^{\infty} F_X\left(\min\left(\frac{x_1 - y}{t_1}, \ldots, \frac{x_n - y}{t_n}\right)\right) dF_Y(y)$$

при $t_1 > 0, \ldots, t_n > 0$.

Пример 1.5. Пусть X, Y — независимые случайные величины, имеющие гауссовское распределение $\mathcal{N}(0;1/2)$. Случайный процесс определен соотношением $\xi(t)=(X+Y)/t,\ t>0$. Вычислить $\mathbf{P}\{|\xi(t)|\leqslant 3/t\}$ для произвольного t>0.

Решение. По определению $F_{\xi}(x;t)$ есть функция распределения случайной величины $\xi(t)$. В силу того что $X,\ Y$ — гауссовские и независимые, $\xi(t)=(X+Y)/t$ также имеет гауссовское распределение, причем

$$\mathbf{M}\{\xi(t)\} = \frac{\mathbf{M}\{X\} + \mathbf{M}\{Y\}}{t} = 0, \quad \mathbf{D}\{\xi(t)\} = \frac{\mathbf{D}\{X\} + \mathbf{D}\{Y\}}{t^2} = \frac{1}{t^2}.$$

Тем самым $\xi(t) \sim \mathcal{N}(0; 1/t^2)$, поэтому $F_{\xi}(x; t) = \Phi(xt)$, где

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^2/2} du.$$

Функция $\Phi(z)$ называется интегралом вероятностей или функцией Лапласа. Итак,

$$\mathbf{P}\{|\xi(t)| \le 3/t\} = F_{\varepsilon}(3/t; t) - F_{\varepsilon}(-3/t; t) = \Phi(3) - \Phi(-3) \approx 0.997.$$

Все рассмотренные процессы относятся к случайным функциям. Приведем примеры нахождения законов распределения случайных последовательностей.

Пример 1.6. Пусть случайная последовательность $\{\xi(n), n=1,2,\ldots\}$ такова, что ее сечения независимы в совокупности и имеют одинаковую функцию распределения F(x). Найти семейство конечномерных распределений последовательности ξ .

Решение. По определению 1.7 с учетом независимости случайных величин $\xi(n)$ имеем

$$F_{\xi}(x_1, \ldots, x_k; n_1, \ldots, n_k) = \mathbf{P}\{\xi(n_1) \leqslant x_1, \ldots, \xi(n_k) \leqslant x_k\} =$$

$$= \prod_{i=1}^{k} \mathbf{P}\{\xi(n_i) \leqslant x_i\} = \prod_{i=1}^{k} F(x_i).$$

Заметим, что все конечномерные распределения в данном случае выражаются через одномерное распределение F(x).

Пример 1.7. Пусть случайная последовательность $\{\xi(n), n=0,1,2,\ldots\}$ определена рекуррентным соотношением

$$\xi(n) = \alpha \, \xi(n-1) + \varepsilon_n, \quad n = 1, 2, \dots, \qquad \xi(0) = 0,$$

где $\{\varepsilon_n\}$ — последовательность независимых в совокупности гауссовских случайных величин с параметрами $\mathbf{M}\{\varepsilon_n\}=0,\,\mathbf{D}\{\varepsilon_n\}=\sigma^2>0.$ Найти одномерную функцию распределения случайной последовательности ξ .

Pешение. Из определения случайной величины $\xi(n)$ находим

$$\xi(n) = \varepsilon_1 \alpha^{n-1} + \ldots + \varepsilon_{n-1} \alpha + \varepsilon_n = \sum_{k=1}^n \varepsilon_k \alpha^{n-k}.$$

В силу гауссовости и независимости случайных величин $\{\varepsilon_k\}$ случайная величина $\xi(n)$ — гауссовская с параметрами $m_\xi(n)=0$ и

$$D_{\xi}(n) = \mathbf{D}\{\xi(n)\} = \sum_{k=1}^{n} \mathbf{D}\{\varepsilon_k\} \, \alpha^{2(n-k)} = \left\{ \begin{array}{ll} \sigma^2 \frac{\alpha^{2n}-1}{\alpha^2-1}, & \text{если} & \alpha^2 \neq 1, \\ \sigma^2 n, & \text{если} & \alpha^2 = 1. \end{array} \right.$$

Поэтому одномерная функция распределения имеет вид

$$F_{\xi}(x; n) = \mathbf{P}\{\xi(n) \leqslant x\} =$$

$$= \frac{1}{\sqrt{2\pi D_{\xi}(n)}} \int_{-\infty}^{x} e^{-u^2/2D_{\xi}(n)} du = \Phi\left(x/\sqrt{D_{\xi}(n)}\right). \quad \blacksquare$$

Замечание. Случайная последовательность, описанная в примере 1.6, называется дискретным белым шумом. В дальнейшем эта модель будет часто использоваться для построения более сложных случайных последовательностей. В примере 1.7 последовательность $\{\varepsilon_n\}$ является дискретным гауссовским белым шумом.

1.3. Теорема Колмогорова. Семейство конечномерных распределений является основной характеристикой случайного процесса, полностью определяющей его свойства. Мы будем говорить, что случайный процесс задан, если задано семейство его конечномерных распределений (1.1).

Функции распределения процесса $\xi(t)$ обладают следующими свой-

- 1) $0\leqslant F_\xi(x_1,\ldots,x_n;\ t_1,\ldots,t_n)\leqslant 1$ (условие нормировки). 2) Функции $F_\xi(x_1,\ldots,x_n;\ t_1,\ldots,t_n)$ непрерывны справа по переменным x_i .
 - 3) Если хотя бы одна из переменных $x_i \to -\infty$, то

$$F_{\xi}(x_1,\ldots,x_n;\,t_1,\ldots,t_n)\to 0,$$

если все переменные $x_i \to +\infty$, то

$$F_{\mathcal{E}}(x_1,\ldots,x_n;\ t_1,\ldots,t_n)\to 1.$$

4) Функции $F_{\varepsilon}(x_1, \dots, x_n; t_1, \dots, t_n)$ монотонны в следующем смысле:

$$\Delta_1 \dots \Delta_n F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) \geqslant 0,$$

где Δ_i — оператор конечной разности по переменной x_i

$$\Delta_i F = F(x_1, \dots, x_{i-1}, x_i + h_i, x_{i+1}, \dots, x_n; t_1, \dots, t_n) - F(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n; t_1, \dots, t_n),$$

а $h_1 \geqslant 0, \ldots, h_n \geqslant 0$ произвольны.

5) Для любой перестановки $\{k_1,\ldots,k_n\}$ индексов $\{1,\ldots,n\}$

$$F_{\varepsilon}(x_1,\ldots,x_n;\,t_1,\ldots,t_n)=F_{\varepsilon}(x_{k_1},\ldots,x_{k_n};\,t_{k_1},\ldots,t_{k_n}).$$

6) Для любых $1 \leqslant k < n$ и $x_1, \ldots, x_k \in \mathbb{R}^1$

$$F_{\mathcal{E}}(x_1,\ldots,x_k;\ t_1,\ldots,t_k) = F_{\mathcal{E}}(x_1,\ldots,x_k,+\infty,\ldots,+\infty;\ t_1,\ldots,t_n).$$

Определение 1.9. Свойства 5 и 6 называются условиями согласованности семейства конечномерных распределений.

Пример 1.8. Доказать справедливость свойств 1-6 для произвольного семейства конечномерных распределений.

Решение. Все свойства 1-6 непосредственно вытекают из соответствующих свойств вероятности. Действительно, свойство 1 есть условие нормировки для вероятности. Свойства 2 и 3 немедленно следуют из свойства непрерывности вероятности. Свойство 4 есть условие неотрицательности вероятности, поскольку

$$\Delta_1 \dots \Delta_n F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) = \mathbf{P} \Big\{ \prod_{i=1}^n \{x_i < \xi(t_i) \leqslant x_i + h_i\} \Big\} \geqslant 0.$$

2 Б.М. Миллер и А.Р. Панков

Наконец, свойства 5 и 6 являются свойствами совместной функции распределения случайных величин $\{\xi(t_1),\ldots,\xi(t_n)\}$. Полное доказательство предлагается выполнить самостоятельно (см. задачу 1).

Предположим, что для любого $n \geqslant 1$ и любого набора моментов времени $\{t_1,\ldots,t_n\}\subset T$ заданы функции $F(x_1,\ldots,x_n;t_1,\ldots,t_n), x_1,\ldots,x_n\in\mathbb{R}^1,$ удовлетворяющие условиям 1—6. Является ли это семейство функций семейством конечномерных распределений некоторого случайного процесса? Чтобы положительно ответить на этот вопрос, необходимо построить пространство элементарных исходов Ω , задать некоторую σ -алгебру $\mathcal F$ его подмножеств и вероятность $\mathbf P$ и, наконец, построить семейство функций $\xi(t,\omega)$, определенных на $T\times\Omega$ так, чтобы семейство конечномерных распределений процесса $\xi(t,\omega)$ совпало с семейством функций F. Оказывается, что данная процедура осуществима всегда. Этот основополагающий результат теории случайных процессов известен как теорема Колмогорова.

Теорема 1.1 (Колмогоров). Пусть задано некоторое семейство конечномерных функций распределения

$$F = \{ F(x_1, \dots, x_n; t_1, \dots, t_n), x_i \in \mathbb{R}^1, t_i \in T, i = 1, \dots, n, n \ge 1 \},$$

удовлетворяющих условиям 1–6. Тогда существуют вероятностное пространство $\{\Omega, \mathcal{F}, \mathbf{P}\}$ и случайный процесс $\{\xi(t), t \in T\}$, такие, что семейство конечномерных распределений F_{ξ} случайного процесса $\xi(t)$ совпадает с F.

Замечание. Теорема Колмогорова вместе с установленными выше свойствами семейства конечномерных распределений показывает, что условия 1–6 являются необходимыми и достаточными для существования случайного процесса с заданными конечномерными распределениями F_{ξ} .

Таким образом, всегда найдется случайный процесс с заданным семейством конечномерных распределений. Оказывается, что в общем случае такой процесс не будет единственным. Другими словами, семейство конечномерных распределений задает целый класс случайных процессов, которые в некотором смысле являются эквивалентными. Рассмотрим более подробно различные подходы к определению этого понятия.

Пусть $\{X(t), t \in T\}$ и $\{Y(t), t \in T\}$ — два случайных процесса, определенные на одном и том же вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$ и принимающие значения в одном и том же измеримом пространстве, например $\{\mathbb{R}^1, \mathcal{B}(\mathbb{R}^1)\}$, где $\mathcal{B}(\mathbb{R}^1)$ — σ -алгебра борелевских подмножеств \mathbb{R}^1 .

Определение 1.10. Процессы $\{X(t), t \in T\}$ и $\{Y(t), t \in T\}$ называются стохастически эквивалентными в широком смысле, если для любых $\{t_1, \ldots, t_n\} \subset T$, $\{B_1, \ldots, B_n\} \subset \mathcal{B}(\mathbb{R}^1)$, $n=1,2,\ldots$ выпол-

няется равенство

$$\mathbf{P}\{X(t_1) \in B_1, \dots, X(t_n) \in B_n\} = \mathbf{P}\{Y(t_1) \in B_1, \dots, Y(t_n) \in B_n\}.$$
(1.3)

Замечание. Условие эквивалентности в широком смысле означает, что семейства конечномерных распределений процессов X и Y совпадают.

Определение 1.11. Если для любого $t \in T$

$$\mathbf{P}\{X(t) = Y(t)\} = 1, \tag{1.4}$$

то процессы называются cmoxacmuчecku эквивалентными или просто эквивалентными.

Введенные понятия эквивалентности связаны между собой, так как справедливо следующее утверждение.

Теорема 1.2. Эквивалентные процессы всегда эквивалентны в широком смысле.

О пределение 1.12. Если процесс X(t) является эквивалентным процессу Y(t), то X(t) называется версией или модификацией процесса Y(t).

Эквивалентность процессов в общем случае не означает их тождественности. Следующий пример показывает, что два эквивалентных процесса могут иметь совершенно различные траектории.

Пример 1.9. Пусть $\Omega = [0,1]$, $\bar{\mathcal{F}} - \sigma$ -алгебра борелевских подмножеств отрезка [0,1], \mathbf{P} — мера Лебега и T = [0,1]. На вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$ определим случайные процессы $\{X(t), t \in T\}$ и $\{Y(t), t \in T\}$ следующим образом:

$$X(t,\omega)=0, \qquad Y(t,\omega)=\left\{ egin{array}{ll} 0, & t
eq \omega, \\ 1, & t=\omega \end{array}
ight.$$
 при $(t,\omega)\in T imes \Omega.$

Показать, что процессы являются эквивалентными, однако их траектории отличаются $(\mathbf{P}$ -п.н.).

Решение. Для некоторого фиксированного $t \in T$

$$\{\omega \colon X(t,\omega) \neq Y(t,\omega)\} = \{\omega \colon \omega = t\} = \{t\}.$$

Поскольку мера Лебега одноточечного множества равна нулю, то

$$\mathbf{P}{X(t) = Y(t)} = 1$$
 для любого $t \in T$,

т. е. процессы X(t) и Y(t) эквивалентны. Тем не менее у процессов X(t) и Y(t) нет ни одной пары совпадающих траекторий. Действительно, для всякого $\omega \in \Omega$ в точке $t^* = \omega$ по условию $X(t^*,\omega) \neq Y(t^*,\omega)$, поэтому

$$\mathbf{P}\{\omega \colon X(t,\omega) = Y(t,\omega) \ \forall \ t \in T\} = 0. \quad \blacksquare$$

Следующее определение описывает наиболее сильный тип эквивалентности.

Определение 1.13. Процессы $\{X(t), t \in T\}$ и $\{Y(t), t \in T\}$ называются неотличимыми, если

$$\mathbf{P}\{X(t) = Y(t) \ \forall \ t \in T\} = 1. \tag{1.5}$$

Условие (1.5) часто записывают также в следующем виде:

$$\mathbf{P}\left\{\sup_{t\in T}|X(t)-Y(t)|>0\right\}=0.$$

При некоторых условиях, однако, определения 1.11 и 1.13 эквивалентны. Это справедливо, например, если X(t) и Y(t) — случайные последовательности (т. е. множество T счетно).

 Π ример 1.10. Доказать, что эквивалентные случайные последовательности неотличимы.

Решение. Пусть X(t), Y(t) — эквивалентные процессы с дискретным временем $t \in T = \mathbb{Z},$ тогда

 $\mathbf{P}\{X(t) \neq Y(t) \text{ хотя бы для одного } t \in T\} =$

$$= \mathbf{P} \Big\{ \bigcup_{t \in T} \{ X(t) \neq Y(t) \} \Big\} \leqslant \sum_{t \in T} \mathbf{P} \{ X(t) \neq Y(t) \} = 0,$$

что влечет выполнение условия (1.5). ■

Таким образом, стохастически эквивалентные случайные последовательности неотличимы. Для случайных функций, к сожалению, это утверждение в общем случае несправедливо без некоторых дополнительных ограничений. Тем не менее справедливо следующее практически важное утверждение.

Теорема 1.3. Если две стохастически эквивалентные случайные функции являются регулярными (см. определение 1.6), то они неотличимы.

Замечание. Из приведенных выше рассуждений следует, что задание совоку пности конечномерных распределений в общем случае не позволяет заранее обеспечить выполнение некоторых требований относительно поведения траекторий случайных функций (например, непрерывность, монотонность, дифференцируемость и т. д.). Однако если случайная функция регулярна или задана конструктивно некоторым соотношением, то мы можем определить вероятности достаточно сложных событий, связанных с поведением ее траекторий.

Пример 1.11. Предположим, что случайная функция задана соотношением $\xi(t)=X^2+2t\,Y+t^2,\ t\geqslant 0,$ где $X,\ Y$ — независимые случайные величины, имеющие гауссовское распределение $\mathcal{N}(0;1).$ Найти вероятности следующих событий:

- 1) $A_1 = \{\xi(t) \text{ монотонно не убывает}\};$
- 2) $A_2 = \{\xi(t) \text{ неотрицательна}\};$
- 3) $A_3 = \{\xi(t) = 0 \text{ хотя бы для одного } t \in D\}$, где $D \subset [0, \infty)$ некоторое конечное или счетное подмножество;
 - 4) $A_4 = \{\xi(t) = 0 \text{ хотя бы для одного } t \in [0, \infty)\}.$

Решение. 1) Поскольку траектории $\xi(t)$ дифференцируемы по t, то условие их монотонности есть $\xi'(t)=2Y+2t\geqslant 0,\ t\geqslant 0$. Для выполнения этого условия необходимо и достаточно, чтобы Y была неотрицательной. Таким образом, $\mathbf{P}\{A_1\}=\mathbf{P}\{Y\geqslant 0\}=1/2$.

2) Условие неотрицательности траекторий $\xi(t)$ выполняется, если либо Y>0, либо $Y\leqslant 0$, но $|Y|\leqslant |X|$. Таким образом, в силу независимости X, Y и симметрии их законов распределения получаем

$$\mathbf{P}{A_2} = \mathbf{P}{Y > 0} + \mathbf{P}{Y \le 0, |Y| \le |X|} = 1/2 + 1/4 = 3/4.$$

3) $\mathbf{P}\{A_3\} = \mathbf{P}\Big\{\bigcup_{t\in D}\{\xi(t)=0\}\Big\} \leqslant \sum_{t\in D}\mathbf{P}\{\xi(t)=0\}$. Для любого фиксированного t справедливо

$$\{\xi(t) = 0\} = \{X^2 + 2tY + t^2 = 0\} = \{(X, Y) \in B\},\$$

где множество $B=\{(x,y)\in\mathbb{R}^2: x^2+2ty+t^2=0\}$ представляет собой параболу и поэтому имеет нулевую меру Лебега в \mathbb{R}^2 . Теперь, учитывая, что совместное распределение случайных величин $X,\ Y$ имеет плотность p(x,y), получаем

$$\mathbf{P}\{\xi(t) = 0\} = \mathbf{P}\{(X, Y) \in B\} = \int_{B} p(x, y) \, dx dy = 0.$$

Далее, поскольку множество D не более чем счетно, $\mathbf{P}{A_3} = 0$.

4) Событие A_4 состоит в том, что функция $\xi(t)$ имеет на $[0,\infty)$ по крайней мере один корень, что выполняется, если одновременно $Y\leqslant 0$ и $|Y|\geqslant |X|$. Поэтому $\mathbf{P}\{A_4\}=\mathbf{P}\{Y\leqslant 0,\,|Y|\geqslant |X|\}=1/4$.

1.4. Моментные характеристики случайного процесса. Моментные характеристики случайного процесса задают его простейшие свойства и вычисляются с помощью конечномерных распределений различных порядков. Пусть $\xi(t)$ — скалярный (вещественный) процесс.

О пределение 1.14. Неслучайная функция $m_{\xi}(t),\,t\in T,$ определяемая соотношением

$$m_{\xi}(t) = \mathbf{M}\{\xi(t)\} = \int_{-\infty}^{\infty} x \, dF_{\xi}(x; t),$$

называется математическим ожиданием процесса $\xi(t)$ или его средним значением. Если $m_{\xi}(t)=0$ при всех $t\in T$, то процесс называется центрированным.

О пределение 1.15. Неслучайная функция $D_{\xi}(t),\,t\in T,$ определяемая соотношением

$$\begin{split} D_{\xi}(t) &= \mathbf{D}\{\xi(t)\} = \mathbf{M}\left\{ (\xi(t) - m_{\xi}(t))^{2} \right\} = \\ &= \mathbf{M}\left\{ \xi(t)^{2} \right\} - m_{\xi}^{2}(t) = \int_{-\infty}^{\infty} x^{2} dF_{\xi}(x; t) - m_{\xi}^{2}(t), \end{split}$$

называется дисперсией (или дисперсионной функцией) процесса $\xi(t)$.

Замечание. При каждом $t\in T$ математическое ожидание и дисперсия $m_\xi(t),\, D_\xi(t)$ процесса $\xi(t)$ суть математическое ожидание и дисперсия его сечения в точке $t\in T$.

Определение 1.16. Неслучайная функция $R_{\xi}(t,\tau),\ t,\tau\in T,$ определяемая соотношением

$$\begin{split} R_{\xi}(t,\tau) &= \mathbf{cov}\{\xi(t),\xi(\tau)\} = \\ &= \mathbf{M}\{(\xi(t) - m_{\xi}(t))(\xi(\tau) - m_{\xi}(\tau))\} = \mathbf{M}\{\xi(t)\xi(\tau)\} - m_{\xi}(t)m_{\xi}(\tau) = \\ &= \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} x_{1}x_{2} \, dF_{\xi}(x_{1},x_{2};\,t,\tau) - m_{\xi}(t)m_{\xi}(\tau), \end{split}$$

называется ковариационной функцией процесса $\xi(t)$.

Замечания. 1) При любых $t,\tau\in T$ функция $R_\xi(t,\tau)$ численно равна ковариации сечений случайного процесса $\xi_t(\omega)$ и $\xi_\tau(\omega)$ в точках $t,\tau\in T$ и характеризует степень линейной зависимости между сечениями. Для вычисления $R_\xi(t,\tau)$ необходимо знать двумерное распределение $F_\xi(x_1,x_2;\ t,\tau)$ процесса $\xi(t)$. Заметим также, что

$$D_{\mathcal{E}}(t) = R_{\mathcal{E}}(t, t), \quad t \in T.$$

Из неравенства Коши–Буняковского следует, что для существования $m_\xi(t),\ D_\xi(t)$ и $R_\xi(t,\tau)$ при всех $t,\tau\in T$ достаточно выполнения условия

$$\mathbf{M}\{|\xi(t)|^2\} < \infty \quad \forall \ t \in T. \tag{1.6}$$

2) Если распределения $F_{\xi}(x;t)$ и $F_{\xi}(x_1,x_2;t,\tau)$ имеют плотности распределения $p_{\xi}(x;t)$ и $p_{\xi}(x_1,x_2;t,\tau)$, то

$$m_{\xi}(t) = \int_{-\infty}^{\infty} x \, p_{\xi}(x; t) \, dx, \qquad D_{\xi}(t) = \int_{-\infty}^{\infty} x^2 \, p_{\xi}(x; t) \, dx - m_{\xi}^2(t),$$

$$R_{\xi}(t,\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 \, p_{\xi}(x_1, x_2; t, \tau) \, dx_1 dx_2 - m_{\xi}(t) m_{\xi}(\tau).$$

О пределение 1.17. Случайный процесс $\{\xi(t), t \in T\}$, удовлетворяющий условию (1.6), называется процессом с конечными моментами второго порядка или гильбертовым случайным процессом.

Определение 1.18. Пусть $\xi(t)=X(t)+iY(t)$ — комплексный процесс, где $X(t), Y(t), t \in T$ — некоторые действительные случайные процессы, а $i^2=-1$. Если

$$\mathbf{M}\big\{|\xi(t)|^2\big\} = \mathbf{M}\Big\{\xi(t)\overline{\xi(t)}\Big\} = \mathbf{M}\big\{X^2(t) + Y^2(t)\big\} < \infty \quad \forall \, t \in T,$$

то процесс $\xi(t)$ называется комплексным гильбертовым процессом. Функция

$$R_{\xi}(t,\tau) = \mathbf{M} \Big\{ (\xi(t) - m_{\xi}(t)) \overline{(\xi(\tau) - m_{\xi}(\tau))} \Big\} \,, \quad t,\tau \in T,$$

где $\overline{\{\,\cdot\,\}}$ означает комплексное сопряжение, называется ковариационной функцией комплексного случайного процесса $\xi(t)$.

Пример 1.12. Пусть $\xi(t)=X\varphi(t),\,t\in T$, где X — действительная случайная величина со средним m_X и дисперсией D_X , а $\varphi(t)$ — неслучайная функция на T. Найти $m_\xi(t),\,D_\xi(t)$ и $R_\xi(t,\tau)$.

Решение. В соответствии с определениями 1.14-1.16 имеем

$$m_{\xi}(t) = \mathbf{M}\{X\varphi(t)\} = \mathbf{M}\{X\}\,\varphi(t) = m_{X}\varphi(t),$$

$$R_{\xi}(t,\tau) = \mathbf{cov}\{X\varphi(t), X\varphi(\tau)\} = \mathbf{cov}\{X,X\}\,\varphi(t)\varphi(\tau) = D_{X}\varphi(t)\varphi(\tau),$$

$$D_{\xi}(t) = R_{\xi}(t, t) = D_X \varphi^2(t)$$
.

Следующий пример является обобщением предыдущего.

$$\Pi$$
ример 1.13. Пусть $\xi(t)=\sum_{i=1}^n X_i \varphi_i(t), \ t \in T,$ где X_i — действи-

i=1 тельные некоррелированные случайные величины с известными параметрами $\{m_{X_i},\,D_{X_i}\},$ а $\{\varphi_i(t)\}$ — заданные на T детерминированные функции. Найти $m_{\xi}(t),\,D_{\xi}(t)$ и $R_{\xi}(t,\tau).$

Решение. В соответствии с определениями 1.14-1.16 имеем

$$m_{\xi}(t) = \mathbf{M} \Big\{ \sum_{i=1}^{n} X_{i} \varphi_{i}(t) \Big\} = \sum_{i=1}^{n} \mathbf{M} \{X_{i}\} \varphi_{i}(t) = \sum_{i=1}^{n} m_{X_{i}} \varphi_{i}(t),$$

$$R_{\xi}(t, au) = \mathbf{cov}\Big\{\sum_{i=1}^{n} X_{i}\varphi_{i}(t), \sum_{j=1}^{n} X_{j}\varphi_{j}(au)\Big\} =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{cov}\{X_i, X_j\} \, \varphi_i(t) \varphi_j(\tau).$$

Так как X_1,\dots,X_n — некоррелированные случайные величины, т. е. $\mathbf{cov}\{X_i,X_j\}=0$ при $i\neq j$, то

$$R_{\xi}(t,\tau) = \sum_{i=1}^{n} D_{X_i} \varphi_i(t) \varphi_i(\tau), \qquad D_{\xi}(t) = R_{\xi}(t,t) = \sum_{i=1}^{n} D_{X_i} \varphi_i^2(t). \blacksquare$$

Пример 1.14. Найти необходимое и достаточное условие, при котором существует процесс $\{\xi(t), t \in T\}$ с характеристиками

$$\mathbf{M}\{\xi(t)\} = m_{\xi}(t), \quad \mathbf{cov}\{\xi(t), \xi(\tau)\} = R_{\xi}(t, \tau), \quad (1.7)$$

где $m_{\xi}(t),\,R_{\xi}(t, au)$ — заданные вещественные функции.

Решение. Найдем сначала необходимое условие. Пусть $\xi(t)$ — процесс с характеристиками (1.7). Тогда для любых наборов $\{t_1,\ldots,t_n\}\subset T$ и $\{z_1,\ldots,z_n\}\subset \mathbb{C}$ справедливо соотношение

$$\mathbf{D}\left\{\sum_{i=1}^{n} \xi(t_i) z_i\right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{cov}\left\{\xi(t_i), \xi(t_j)\right\} z_i \overline{z}_j \geqslant 0,$$

т. е. функция $R_{\xi}(t,\tau)$ удовлетворяет условию неотрицательной определенности:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} R_{\xi}(t_i, t_j) z_i \overline{z}_j \geqslant 0 \quad \forall \{t_1, \dots, t_n\} \subset T, \quad \forall \{z_1, \dots, z_n\} \subset \mathbb{C}.$$
(1.8)

Докажем теперь, что условие (1.8) является в то же время и достаточным для существования случайного процесса с моментными характеристиками (1.7). Действительно, условие (1.8) означает, что матрица $K = \{R_{\xi}(t_i,t_j)\}_{i,j=1,\dots,n}$ является неотрицательно-определенной, поэтому существует функция $F_{\xi}(x_1,\dots,x_n;\,t_1,\dots,t_n)$ n-мерного гауссовского распределения $\mathcal{N}(m;K)$, где $m = \{m_{\xi}(t_i)\}_{i=1,\dots,n}$ (см. п. 14.6).

Как нетрудно проверить, построенная система конечномерных распределений удовлетворяет условиям 1—6 из п. 1.3. Поэтому в силу теоремы Колмогорова существует случайный процесс $\{\xi(t), t \in T\}$, имеющий указанное семейство гауссовских распределений и, в частности, обладающий характеристиками (1.7).

Замечание. Процесс, рассмотренный в примере 1.14, называется гауссовским случайным процессом. Свойства таких процессов более детально рассматриваются в следующем параграфе.

Определение 1.19. Пусть заданы два комплексных процесса $\xi(t),\,\eta(t),\,t\in T.$ Детерминированная функция

$$R_{\xi\eta}(t,\tau) = \mathbf{cov}\{\xi(t),\eta(\tau)\} =$$

$$= \mathbf{M} \Big\{ (\xi(t) - m_\xi(t)) \overline{(\eta(\tau) - m_\eta(\tau))} \Big\} \,, \quad t, \tau \in T,$$

называется взаимной ковариационной функцией случайных процессов ξ и η .

Замечание. Функция $R_{\xi\eta}(t,\tau)$ существует, если $\xi(t)$ и $\eta(t)$ — гильбертовы процессы.

Определение 1.20. Пусть $\xi(t)=\{\xi_1(t),\ldots,\xi_n(t)\}^*\in\mathbb{R}^n$ — векторный случайный процесс. Детерминированная n-мерная векторфункция $m_\xi(t)\in\mathbb{R}^n$, $t\in T$, определяемая соотношением

$$m_{\xi}(t) = \{ \mathbf{M} \{ \xi_1(t) \}, \dots, \mathbf{M} \{ \xi_n(t) \} \}^*,$$

называется математическим ожиданием векторного случайного процесса $\xi(t)$.

Детерминированная матричная функция

$$\begin{split} R_{\xi}(t,\tau) &= \mathbf{cov}\{\xi(t),\xi(\tau)\} = \mathbf{M}\Big\{(\xi(t) - m_{\xi}(t))\overline{(\xi(\tau) - m_{\xi}(\tau))^*}\Big\} = \\ &= \mathbf{M}\Big\{\xi(t)\overline{\xi^*(\tau)}\Big\} - m_{\xi}(t)\overline{m_{\xi}^*(\tau)}, \quad t,\tau \in T, \end{split}$$

называется ковариационной функцией векторного случайного процесса $\xi(t)$.

3амечание. Для существования $m_\xi(t)$ и $R_\xi(t,\tau)$ при всех $t,\tau\in T$ достаточно выполнения условия

$$\mathbf{M}\{|\xi(t)|^{2}\} = \mathbf{M}\{|\xi_{1}(t)|^{2} + \ldots + |\xi_{n}(t)|^{2}\} < \infty \quad \forall t \in T.$$
 (1.9)

Пример 1.15. Пусть $\xi(t)=G(t)U,\ t\in T,$ где $U\in\mathbb{R}^m$ — некоторый случайный вектор с параметрами $\mathbf{M}\{U\}=m_U,\ \mathbf{cov}\{U,U\}=R_U,$ а G(t) — детерминированная матричная функция размера $n\times m$. Найти $m_\xi(t),\ R_\xi(t,\tau)$.

Решение. В соответствии с определением 1.20

$$m_{\xi}(t) = \mathbf{M}\{\xi(t)\} = G(t) m_U,$$

$$R_{\xi}(t,\tau) = \mathbf{cov}\{G(t)U, G(\tau)U\} = G(t)\mathbf{cov}\{U,U\}G^{*}(\tau) = G(t)R_{U}G^{*}(\tau),$$

а ковариационная матрица $D_{\xi}(t)$ сечения $\xi(t), t \in T$, имеет вид

$$D_{\xi}(t) = R_{\xi}(t, t) = G(t)R_U G^*(t).$$

Определение 1.21. Пусть $\{\xi(t),\ t\in T\}$ — действительный случайный процесс. Детерминированная вещественная функция $m_{\xi}(t_1,\ldots,t_k),\ t_1,\ldots,t_k\in T,$ определяемая соотношением

$$m_{\xi}(t_1,\ldots,t_k) = \mathbf{M}\{\xi(t_1)\ldots\xi(t_k)\} =$$

$$= \int_{\mathbb{R}^k} x_1 \dots x_k \, dF_{\xi}(x_1, \dots, x_k; t_1, \dots, t_k),$$

называется смешанным моментом порядка k случайного процесса $\xi(t)$.

Определение 1.22. Пусть $\{\xi(t), t \in T\}$ — действительный случайный процесс. Детерминированная комплексная функция $\Psi_{\xi}(z_1,\ldots,z_k;t_1,\ldots,t_k)$ вещественных переменных z_1,\ldots,z_k , определяемая для произвольного набора $t_1,\ldots,t_k \in T$ соотношением

$$\Psi_{\xi}(z_1, \dots, z_k; t_1, \dots, t_k) = \mathbf{M} \left\{ \exp \left(i \sum_{j=1}^k z_j \xi(t_j) \right) \right\} =$$

$$= \int_{\mathbb{R}^k} \exp \left(i \sum_{j=1}^k z_j x_j \right) dF_{\xi}(x_1, \dots, x_k; t_1, \dots, t_k),$$

называется характеристической функцией k-мерного распределения процесса $\xi(t)$.

Замечание. Из курса теории вероятностей известно, что характеристическая функция k-го порядка позволяет восстановить соответствующую k-мерную функцию распределения, поэтому эти характеристики при описании вероятностной структуры случайного процесса являются взаимозаменяемыми (см. п. 14.6).

Пример 1.16. В условиях примера 1.12 найти характеристическую функцию процесса $\xi(t)$, если дополнительно известно, что X — гауссовская случайная величина.

Решение. Пусть $\eta=\sum\limits_{j=1}^kz_j\xi(t_j)$, тогда в силу $\xi(t_j)=X\varphi(t_j)$ получаем $\eta=X\sum\limits_{j=1}^kz_j\varphi(t_j)$, поэтому η — гауссовская случайная величина со средним и дисперсией:

$$m_{\eta} = m_X \sum_{j=1}^{k} z_j \varphi(t_j), \qquad D_{\eta} = D_X \left(\sum_{j=1}^{k} z_j \varphi(t_j)\right)^2.$$
 (1.10)

Отсюда получаем выражение для характеристической функции:

$$\Psi_{\xi}(z_1, \ldots, z_k; t_1, \ldots, t_k) = \mathbf{M} \{e^{i\eta}\} = \exp \{im_{\eta} - \frac{1}{2}D_{\eta}\},$$

где $m_\eta,\, D_\eta$ определены в (1.10) и учтено, что для гауссовской случайной величины η при любом $\lambda\in\mathbb{R}^1$ справедливо (см. п. 14.6)

$$\mathbf{M} \big\{ e^{i\lambda\eta} \big\} = \exp \Big\{ i\lambda m_{\eta} - \frac{\lambda^2}{2} D_{\eta} \Big\}. \quad \blacksquare$$

Замечание. Выше был введен в рассмотрение белый шум с дискретным временем, т.е. последовательность центрированных независимых и, следовательно, некоррелированных случайных величин. Для случая непрерывного времени по аналогии вводится понятие белого шума как процесса $\xi(t)$ с моментными характеристиками

$$m_{\xi}(t) = 0, \qquad R_{\xi}(t,s) = \sigma^2 \delta(t-s),$$

где $\delta(\tau)$ — дельта-функция Дирака (см. п. 13.5). Очевидно, что $R_{\xi}(t,s)=0$, если $t\neq s$, т. е. сечения этого процесса, даже при очень близких t и s, некоррелированы. Однако $\xi(t)$ не является гильбертовым случайным процессом, так как $D_{\xi}(t)=R_{\xi}(t,t)=\infty$ при всех $t\in T$. Таким образом, белый шум с непрерывным временем физически нереализуем, однако он является удобной математической моделью для описания динамических систем, функционирующих в присутствии постоянно действующих случайных возмущений (см. гл. III).

1.5. Задачи для самостоятельного решения.

- 1. Доказать свойства 1-6 конечномерных распределений (1.1).
- 2. Доказать свойства 1-6 для семейства конечномерных распределений, найденных в примерах 1.3, 1.4.
- **3.** В условиях примера 1.4 построить пучок траекторий процесса $\xi(t)$, если X и Y распределены равномерно на отрезках [-1,0] и [0,1] соответственно.

4. Доказать, что для существования $m_{\xi}(t),\ D_{\xi}(t),\ R_{\xi}(t, au)$ при всех $t, \tau \in T$ достаточно, чтобы выполнялось условие $\mathbf{M}\{|\xi(t)|^2\} < \infty \ \forall \ t \in T$.

Указание. Воспользоваться неравенством Коши-Буняковского.

5. Доказать, что $D_{\xi}(t) = R_{\xi}(t,t)$.

6. Пусть в примере 1.4 X и Y имеют плотности распределения $p_X(x)$ и $p_{Y}(y)$. Найти двумерную плотность распределения процесса $\xi(t)$. Показать, что распределения порядка $k \geqslant 3$ плотности не имеют.

Указание. Воспользоваться формулой преобразования плотности при невырожденном преобразовании случайных величин. Показать, что мера совместного распределения $\{\xi(t_1), \xi(t_2), \dots, \xi(t_k)\}, k \geqslant 3$, сосредоточена на

некотором линейном подпространстве размерности 2.
 Ответ.
$$p_{\xi}(x_1,x_2;\,t_1,t_2)=\frac{1}{t_2-t_1}\,p_X\!\left(x_1-\frac{x_2-x_1}{t_2-t_1}\right)p_Y\!\left(\frac{x_2-x_1}{t_2-t_1}\right)$$
 для моментов $t_2>t_1$.

7. Пусть в примере 1.13 случайные величины X_i являются независимыми и гауссовскими с распределением $\mathcal{N}(0;1)$. Найти $F_{\varepsilon}(x;t)$.

Указание. Определить математическое ожидание и дисперсию про-

8. Пусть $\xi(t) = Xt^2 + Yt, \, t > 0$ — случайный процесс, где $X, \, Y$ — независимые случайные величины с гауссовским распределением $\mathcal{N}(0;1)$. Найти вероятность того, что траектория монотонно не убывает.

Ответ.
$$\mathbf{P}\{\xi(t)$$
 — неубывающая функция $\mathbf{P}\{X\geqslant 0,Y\geqslant 0\}=1/4$.

9. В условиях предыдущей задачи найти вероятность случайного события $A = \{\min_{t>0} \xi(t) < 0\}.$

Otbet.
$$\mathbf{P}\{A\} = \mathbf{P}\{X > 0, Y < 0\} + \mathbf{P}\{X < 0, Y > 0\} = 1/2.$$

10. Случайный процесс задан соотношением $\xi(t) = X + \alpha t, t > 0$, где X — случайная величина с непрерывной функцией распределения, а $\alpha>1$ — детерминированная постоянная. Пусть $D\subset [0,\infty)$ — некоторое конечное или счетное подмножество. Найти вероятности событий:

1) $\mathbf{P}\{\xi(t) = 0 \text{ хотя бы для одного } t \in D\};$

2) $\mathbf{P}\{\xi(t) = 0 \text{ хотя бы для одного } t \in [0,1]\}.$

Ответ. 1) 0; 2) $\mathbf{P}\{-\alpha \leqslant X \leqslant 0\}$.

11. Найти ковариационную функцию процесса $\xi(t) = X \cos(t + Y)$, где X, Y независимы, X имеет распределение $\mathcal{N}(0;1)$, а Y имеет равномерное распределение на $[-\pi,\pi]$. Ответ. $R_{\xi}(t,\tau) = \cos(t-\tau)$.

Otbet.
$$R_{\mathcal{E}}(t,\tau) = \cos(t-\tau)$$

12. Найти математическое ожидание и ковариационную функцию комплексного случайного процесса $\xi(t)=Ue^{iVt}$, где U,V— независимые случайные величины, $\mathbf{M}\{U\}=0,\ \mathbf{D}\{U\}=D,\$ а случайная величина V распределена по закону Коши с плотностью вероятности $p_{V}(x) = \frac{\alpha}{\pi(\alpha^2 + x^2)},$ где $\alpha > 0$.

У казание. Воспользоваться табличным интегралом $\int\limits_{-\infty}^{\infty} \frac{\cos\beta x}{\alpha^2+x^2}\,dx =$ $=\frac{\pi}{\alpha}\,e^{-\alpha|\beta|}.$ Otbet. $m_\xi(t)=0,\ R_\xi(t,\tau)=De^{-\alpha|t-\tau|}.$

§ 2. Основные классы случайных процессов

2.1. Гауссовские случайные процессы.

Определение 2.1. Действительный случайный процесс $\{\xi(t), t\in T\}$ называется $\mathit{rayccoeckum},$ если его характеристическая функция имеет вид

$$\Psi_{\xi}(z_1, \dots, z_k; t_1, \dots, t_k) = \mathbf{M} \left\{ \exp \left(i \sum_{j=1}^k z_j \xi(t_j) \right) \right\} =$$

$$= \exp \left(i \sum_{j=1}^k z_j m_{\xi}(t_j) - \frac{1}{2} \sum_{l=1}^k \sum_{j=1}^k R_{\xi}(t_l, t_j) z_l z_j \right), \quad (2.1)$$

где z_1, \ldots, z_k — произвольные вещественные числа, $t_1, \ldots, t_k \in T$, а

$$m_{\xi}(t_j) = \mathbf{M}\{\xi(t_j)\}, \qquad R_{\xi}(t_l, t_j) = \mathbf{cov}\{\xi(t_l), \xi(t_j)\}.$$

Характеристическую функцию можно представить в виде

$$\Psi_{\xi}(z; t_1, \dots, t_k) = \exp\left(iz^* m_{\xi} - \frac{1}{2}z^* R_{\xi}z\right),$$
 (2.2)

где
$$z = \{z_1, \ldots, z_k\}^*$$
, $m_{\xi} = \{m_{\xi}(t_1), \ldots, m_{\xi}(t_k)\}^*$ и $R_{\xi} = \{R_{\xi}(t_i, t_j)\}$.

Как уже говорилось ранее, характеристическая функция полностью определяет распределение совокупности случайных величин, и тем самым задано и полное семейство конечномерных распределений.

Замечания. 1) Из курса теории вероятностей известно, что гауссовский случайный вектор $\eta=\{\eta_1,\ldots,\eta_k\}^*$ с математическим ожиданием m_η и ковариационной матрицей R_η имеет плотность распределения $p_\eta(x)$ тогда и только тогда, когда матрица R_η — невырожденная, т. е. $\det[R_\eta]>0$. В этом случае

$$p_{\,\eta}(x) = \frac{1}{(2\pi)^{k/2} (\det[R_{\eta}])^{1/2}} \exp\Bigl\{ -\frac{1}{2} (x - m_{\,\eta})^* R_{\eta}^{-1} (x - m_{\,\eta}) \Bigr\} \,.$$

Таким образом, если матрица $R_{\xi} = \{R_{\xi}(t_i,t_j)\}_{i,j=1,\dots,k}$ положительно определена, то совместное распределение сечений $\{\xi(t_1),\dots,\xi(t_k)\}$ имеет плотность вероятности

$$p_{\xi}(x; t_1, \dots, t_k) = \frac{1}{(2\pi)^{k/2} (\det[R_{\xi}])^{1/2}} \exp\left\{-\frac{1}{2} (x - m_{\xi})^* R_{\xi}^{-1} (x - m_{\xi})\right\},\,$$

где $m_{\xi} = \{m_{\xi}(t_1), \ldots, m_{\xi}(t_k)\}^*$, $R_{\xi} = \{R_{\xi}(t_i, t_j)\}$, $x = \{x_1, \ldots, x_k\}^*$. Связь между характеристической функцией и плотностью распределения k-го порядка имеет вид

$$p_{\xi}(x; t_1, \ldots, t_k) = (2\pi)^{-k} \int_{\mathbb{R}^k} e^{-ix^*z} \Psi_{\xi}(z; t_1, \ldots, t_k) dz.$$

Если же $\det[R_\xi]=0$, то это означает, что сечения $\{\xi(t_1),\ldots,\xi(t_k)\}$ линейно зависимы, а их совместное распределение $F_\xi(x;\,t_1,\ldots,t_k)$ плотности не имеет.

- 2) Нетрудно проверить, что семейство конечномерных гауссовских распределений, соответствующее семейству характеристических функций (2.2), удовлетворяет условиям 1—6 теоремы Колмогорова (см. п. 1.3). Таким образом, произвольный набор $\{\xi(t_1),\ldots,\xi(t_k)\}$ сечений гауссовского случайного процесса является случайным вектором с гауссовским распределением. Подчеркнем также, что все эти распределения согласованы (в смысле определения 1.9).
- 3) Из определения гауссовского процесса следует, что семейство его конечномерных распределений полностью определяется двумя моментными характеристиками: математическим ожиданием и ковариационной функцией.

 Π р и м е р 2.1. Пусть X_1, \ldots, X_n — совокупность случайных величин, совместное распределение которых — гауссовское. Показать, что случайный процесс

$$\xi(t) = \sum_{l=1}^{n} X_{l} f_{l}(t),$$

где $f_l(t)$ — некоторые детерминированные функции, является гауссовским. Найти математическое ожидание и ковариационную функцию процесса $\xi(t)$.

Решение. Для некоторого набора моментов времени $\{t_1,\ldots,t_k\}$ найдем характеристическую функцию совместного распределения сечений $\{\xi(t_1),\ldots,\xi(t_k)\}$. По определению

$$\begin{split} &\Psi_{\xi}(z_1, \dots, z_k; \ t_1, \dots, t_k) = \\ &= \mathbf{M} \Big\{ \exp \Big(i \sum_{j=1}^k \xi(t_j) z_j \Big) \Big\} = \mathbf{M} \Big\{ \exp \Big(i \sum_{j=1}^k \sum_{l=1}^n X_l f_l(t_j) z_j \Big) \Big\} = \\ &= \mathbf{M} \Big\{ \exp \Big(i \sum_{l=1}^n X_l \sum_{j=1}^k f_l(t_j) z_j \Big) \Big\} = \mathbf{M} \Big\{ \exp \Big(i \sum_{l=1}^n X_l a_l \Big) \Big\}, \end{split}$$

где $a_l=\sum_{j=1}^k f_l(t_j)z_j$. Поскольку совместное распределение случайных величин $\{X_1,\ldots,X_n\}$ является гауссовским, то

$$\Psi_{\mathcal{E}}(z_1,\ldots,z_k;\,t_1,\ldots,t_k) =$$

$$= \exp \left(i \sum_{l=1}^{n} \mathbf{M} \{X_{l}\} a_{l} - \frac{1}{2} \sum_{l=1}^{n} \sum_{m=1}^{n} \mathbf{cov} \{X_{l}, X_{m}\} a_{l} a_{m} \right).$$

Далее, подставляя выражения для a_1 , находим

$$\sum_{l=1}^{n} \mathbf{M} \{X_{l}\} a_{l} = \sum_{j=1}^{k} \mathbf{M} \{\xi(t_{j})\} z_{j},$$

$$\sum_{l=1}^{n} \sum_{m=1}^{n} \mathbf{cov}\{X_{l}, X_{m}\} a_{l} a_{m} = \sum_{i=1}^{k} \sum_{j=1}^{k} \mathbf{cov}\{\xi(t_{i}), \xi(t_{j})\} z_{i} z_{j},$$

где

$$\mathbf{M}\{\xi(t)\} = \sum_{l=1}^{n} \mathbf{M}\{X_{l}\} \, f_{l}(t) = m_{\xi}(t),$$

$$\mathbf{cov}\{\xi(t), \xi(s)\} = \sum_{l=1}^{n} \sum_{m=1}^{n} \mathbf{cov}\{X_{l}, X_{m}\} f_{l}(t) f_{m}(s) = R_{\xi}(t, s).$$

Таким образом, процесс $\xi(t)$ является гауссовским, поскольку его характеристическая функция удовлетворяет определению 2.1. Конечномерное распределение k-го порядка в точках $\{t_1,\ldots,t_k\}$ имеет плотность, если матрица $R_{\xi} = \{\mathbf{cov}\{\xi(t_i),\xi(t_j)\}\}_{i,j=1,\ldots,k}$ положительно определена. \blacksquare

Приведем пример гауссовского процесса, не имеющего плотности распределения k-го порядка $(k \geqslant 2)$.

Пример 2.2. Найти плотность одномерного распределения гауссовского случайного процесса

$$\xi(t) = X + t, \quad t \geqslant 0,$$

где X — случайная величина с гауссовским распределением $\mathcal{N}(0;\sigma^2)$, $\sigma>0$. Показать, что ξ не имеет плотности распределения k-го порядка при $k\geqslant 2$.

Решение. Случайная величина $\xi(t)$ имеет гауссовское распределение $\mathcal{N}(t;\sigma^2)$. Поэтому в силу $\sigma>0$ распределение первого порядка случайного процесса $\xi(t)$ имеет плотность

$$p_{\xi}(x; t) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-t)^2}{2\sigma^2}\right\}.$$

Однако уже распределение порядка k=2 не имеет плотности, так как матрица ковариаций

$$R_{\xi} = \{ \mathbf{cov}\{\xi(t_i), \xi(t_j)\} \}_{i,j=1,2} = \begin{pmatrix} \sigma^2 & \sigma^2 \\ \sigma^2 & \sigma^2 \end{pmatrix}$$

вырождена. Отсутствие плотности очевидно, поскольку случайные величины $\xi(t_1)$, $\xi(t_2)$ связаны соотношением $\xi(t_2)=\xi(t_1)+t_2-t_1$ и, следовательно, их совместное распределение в \mathbb{R}^2 сосредоточено на множестве $\{(x_1,x_2)\colon x_2=x_1+t_2-t_1\}$, имеющем нулевую меру Лебега. Для случая k>2 аналогичное рассуждение показывает отсутствие плотности распределения.

Следующий пример демонстрирует гауссовский процесс, у которого все конечномерные распределения имеют плотность.

Пример 2.3. Показать, что существует гауссовский случайный процесс $\{\xi(t),\,t\geqslant 0\}$ с характеристиками

$$M\{\xi(t)\} = 0,$$
 $cov\{\xi(t), \xi(s)\} = min(t, s),$

причем все его конечномерные распределения имеют плотность.

Решение. Если функция $R_{\xi}(t,s)=\min(t,s)$ является неотрицательно-определенной, то существование гауссовского процесса $\xi(t)$ с $m_{\xi}(t)=0$ и ковариационной функцией $R_{\xi}(t,s)$ следует из примера 1.14 и его решения. Если же $R_{\xi}(t,s)$ — положительно-определенная, то конечномерные распределения процесса $\xi(t)$ (в предположении гауссовости) имеют плотность распределения.

Функция $R_{\xi}(t,s) = \min(t,s)$ будет положительно-определенной, если для любых различных моментов времени $0 < t_1 < t_2 < \ldots < t_k$ ковариационная матрица R_{ξ} вектора $\xi = \{\xi(t_1), \xi(t_2), \ldots, \xi(t_k)\}^*$, имеющая вид

$$R_{\xi} = \begin{pmatrix} t_1 & t_1 & \dots & t_1 \\ t_1 & t_2 & \dots & t_2 \\ \dots & \dots & \dots & \dots \\ t_1 & t_2 & \dots & t_k \end{pmatrix},$$

является положительно-определенной. Последнее означает, что $z^*R_\xi z>0$ для всякого ненулевого вектора $z=\{z_1,\ldots,z_k\}^*\in\mathbb{R}^k$. Для доказательства этого факта рассмотрим функцию

$$f(s) = \sum_{i=1}^{k} z_i I_{[0,t_i]}(s),$$

где $I_{[0,t_i]}(s)$ — индикаторная функция отрезка $[0,t_i]$. В силу того что все $t_i>0$ различны, а z_i не равны нулю одновременно, функция f(s) не равна нулю тождественно. Поэтому

$$\int_{0}^{t} |f(s)|^2 ds > 0 \quad \text{при} \quad t \geqslant t_k.$$

Тогда

$$\int_{0}^{t} |f(s)|^{2} ds = \sum_{i=1}^{k} \sum_{j=1}^{k} z_{i} z_{j} \int_{0}^{t} I_{[0,t_{i}]}(s) I_{[0,t_{j}]}(s) ds =$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} z_i z_j \min(t_i, t_j) = z^* R_{\xi} z > 0,$$

что и означает положительную определенность ковариационной матрицы R_{ξ} . Таким образом, совместное распределение сечений $\xi(t_1),\ldots,\xi(t_k)$ гауссовского процесса $\xi(t)$ имеет плотность.

О пределение 2.2. Гауссовский случайный процесс $\{\xi(t), t \geqslant 0\}$ с непрерывным временем, моментными характеристиками

$$M\{\xi(t)\} = 0$$
, $cov\{\xi(t), \xi(s)\} = min(t, s)$, $t, s \ge 0$,

и выходящий из нуля, т. е. $\xi(0) = 0$, называется стандартным винеровским процессом (или процессом броуновского движения).

Этот процесс обладает многими замечательными свойствами и будет подробно изучаться в главе, посвященной случайным функциям. Здесь мы приведем только некоторые его свойства, которые можно вывести непосредственно из определения 2.2.

Пример 2.4. Показать, что приращения процесса броуновского движения на непересекающихся промежутках времени независимы, а также найти распределение произвольного приращения.

Решение. Прежде всего заметим, что совокупность приращений процесса броуновского движения

$$\xi(t_1) - \xi(t_0), \quad \xi(t_2) - \xi(t_1), \quad \dots, \quad \xi(t_k) - \xi(t_{k-1}),$$

где $0=t_0 < t_1 < \ldots < t_k$ и $\xi(t_0)=0$, имеет гауссовское распределение в силу гауссовости случайного вектора $\{\xi(t_1),\xi(t_2),\ldots,\xi(t_k)\}^*$. Поэтому для доказательства независимости приращений достаточно установить их некоррелированность. Итак, для моментов времени $t_i < t_j$ верно соотношение

$$\mathbf{cov}\{\xi(t_i) - \xi(t_{i-1}), \xi(t_i) - \xi(t_{i-1})\} =$$

$$= \min(t_i, t_i) - \min(t_i, t_{i-1}) - \min(t_{i-1}, t_i) + \min(t_{i-1}, t_{i-1}) = 0,$$

что означает некоррелированность приращений процесса $\xi(t)$ на промежутках $[t_{i-1},t_i]$ и $[t_{j-1},t_j]$.

Как уже отмечалось, приращение $\xi(t)-\xi(s)$ имеет гауссовское распределение. Поэтому

$$\xi(t) - \xi(s) \sim \mathcal{N}(0; |t - s|), \tag{2.3}$$

так как
$$\mathbf{M}\{\xi(t)-\xi(s)\}=0$$
 и $\mathbf{D}\{\xi(t)-\xi(s)\}=t+s-2\min(t,s)==|t-s|.$

Пример 2.5. Найти плотность конечномерного распределения процесса броу новского движения.

Решение. Рассмотрим приращения процесса броуновского движения:

$$\eta_1 = \xi(t_1) - \xi(t_0), \quad \eta_2 = \xi(t_2) - \xi(t_1), \quad \dots, \quad \eta_k = \xi(t_k) - \xi(t_{k-1}),$$

где $0 = t_0 < t_1 < \ldots < t_k$. Поскольку $\xi(t_0) = 0$, то

$$\xi(t_1) = \eta_1, \quad \xi(t_2) = \eta_1 + \eta_2, \quad \dots, \quad \xi(t_k) = \eta_1 + \dots + \eta_k.$$

Пусть $p_{\eta}(\cdot)$ — плотность распределения вектора $\eta = \{\eta_1, \ldots, \eta_k\}^*$, а $p_{\eta_i}(\cdot)$ — плотность распределения приращения η_i . Тогда плотность распределения вектора $\xi = \{\xi(t_1), \ldots, \xi(t_k)\}^*$ равна

$$p_{\xi}(x_1, \dots, x_k; t_1, \dots, t_k) = p_{\eta}(x_1, x_2 - x_1, \dots, x_k - x_{k-1}) =$$

$$= p_{\eta_1}(x_1) p_{\eta_2}(x_2 - x_1) \dots p_{\eta_k}(x_k - x_{k-1}),$$

где первое равенство следует из того, что якобиан преобразования $\eta \mapsto \xi$ равен по модулю 1, а второе получено с учетом независимости случайных величин η_1, \ldots, η_k . Тогда из (2.3) следует

$$p_{\xi}(x_1, \dots, x_k; t_1, \dots, t_k) = \prod_{i=1}^k \frac{1}{\sqrt{2\pi|t_i - t_{i-1}|}} e^{-\frac{(x_i - x_{i-1})^2}{2|t_i - t_{i-1}|}},$$
(2.4)

где $t_0 = 0$ и $x_0 = 0$.

В приложениях весьма часто приходится иметь дело с n-мерными гауссовскими процессами, где n>1. По аналогии с введенным ранее определением 2.1 мы можем назвать процесс $\{\xi(t)\in\mathbb{R}^n,\ t\in T\}$ гауссовским, если при любых $t_1,\ldots,t_k\in T,k\geqslant 1\ (n\times k)$ -мерный случайный вектор $\eta=\{\xi^*(t_1),\ldots,\xi^*(t_k)\}^*$ имеет гауссовское $(n\times k)$ -мерное распределение. Все свойства такого процесса полностью определяются n-мерной функцией математического ожидания $m_\xi(t)$ и $(n\times n)$ -мерной (т. е. матричной) ковариационной функцией $R_\xi(t,s)$, которая вычисляется следующим образом:

$$\begin{split} R_{\xi}(t,s) &= \mathbf{M} \Big\{ (\xi(t) - m_{\xi}(t)) (\xi(s) - m_{\xi}(s))^* \Big\} = \\ &= \mathbf{M} \{ \xi(t) \xi^*(s) \} - m_{\xi}(t) m_{\xi}^*(s). \end{split}$$

2.2. Случайные процессы с конечными моментами второго порядка. Многие прикладные задачи в области физики и техники допускают решение, основанное на использовании лишь первых двух моментных характеристик случайного процесса — математического ожидания и ковариационной функции. Это тем более удобно, поскольку эти моментные характеристики можно достаточно просто восстановить, обрабатывая статистические данные. В данном пункте излагаются основные свойства процессов с конечными моментами второго порядка (гильбертовых процессов), которые будут постоянно использоваться в последующем.

В соответствии с определением 1.18 мы рассматриваем комплексные процессы, представимые в виде

$$\xi(t) = X(t) + iY(t), \quad t \in T,$$

где X(t), Y(t) — действительные случайные процессы с конечными моментами второго порядка. В дальнейшем для простоты предполагается, что $\mathbf{M}\{\xi(t)\}=0$ для всех $t\in T$.

Определение 2.3. Ковариационная функция процесса $\xi(t)$ имеет вид

$$R_{\xi}(t,s) = \mathbf{cov}\{\xi(t),\xi(s)\} = \mathbf{M}\left\{\xi(t)\overline{\xi(s)}\right\},$$

где \overline{z} означает комплексную величину, сопряженную к z.

К классу гильбертовых процессов относятся рассмотренные в предыдущем пункте гауссовские процессы и, в частности, процесс броуновского движения. Следующий процесс также является гильбертовым.

Пример 2.6. Пусть случайная функция $\xi(t) = Ue^{i(\omega t + \varphi)}, \ t \in \mathbb{R}^1,$ где U — действительная случайная величина с $\mathbf{M}\{U\} = 0, \ \mathbf{D}\{U\} = D < \infty,$ а случайная величина φ не зависит от U и распределена произвольным образом на $[0,2\pi]$. Показать, что случайная функция $\xi(t)$ является гильбертовым процессом, и определить ее моментные характеристики.

 ${\bf P}$ е шение. ${\bf B}$ силу независимости случайных величин U и φ

$$\begin{split} m_{\xi}(t) &= \mathbf{M}\{\xi(t)\} = \mathbf{M}\Big\{Ue^{i(\omega t + \varphi)}\Big\} = \mathbf{M}\{U\}\,\mathbf{M}\Big\{e^{i(\omega t + \varphi)}\Big\} = 0, \\ D_{\xi}(t) &= \mathbf{M}\big\{|\xi(t)|^2\big\} = \mathbf{M}\big\{U^2\big\} = D < \infty. \end{split}$$

Таким образом, $\xi(t)$ — действительно гильбертов процесс. Определим его ковариационную функцию

$$R_{\xi}(t,s) = \mathbf{M} \Big\{ \xi(t) \overline{\xi(s)} \Big\} = \mathbf{M} \Big\{ U^2 e^{i(\omega t + \varphi)} e^{-i(\omega s + \varphi)} \Big\} = D e^{i\omega(t-s)}. \quad \blacksquare$$

Ковариационная функция является неотрицательно-определенной, т. е. для любых $t_1, \ldots, t_n \in T$ и произвольного набора комплексных чисел $\{z_1, \ldots, z_n\}, n \geqslant 1$, имеет место неравенство

$$\sum_{i=1}^{n} \sum_{j=1}^{n} z_i \overline{z}_j R_{\xi}(t_i, t_j) \geqslant 0.$$

$$(2.5)$$

Это соотношение получается следующим образом:

$$0 \leqslant \mathbf{D} \Big\{ \sum_{i=1}^n z_i \xi(t_i) \Big\} = \sum_{i=1}^n \sum_{j=1}^n z_i \overline{z}_j \mathbf{cov} \{ \xi(t_i), \xi(t_j) \} = \sum_{i=1}^n \sum_{j=1}^n z_i \overline{z}_j R_{\xi}(t_i, t_j).$$

Приведем основные свойства ковариационной функции, которые непосредственно вытекают из свойства неотрицательной определенности (2.5).

T е о р е м а $\ 2.1.$ Ковариационная функция $R_{\xi}(t,s)$ гильбертова случайного процесса $\{\xi(t),\ t\in T\}$ обладает следующими свойствами:

- 1) $R_{\xi}(t,t) = D_{\xi}(t) \geqslant 0$ das $ecex\ t \in T$;
- 2) ковариационная функция является эрмитовой, т. е. удовлетворяет условию

$$R_{\xi}(t_1, t_2) = \overline{R_{\xi}(t_2, t_1)} \quad \forall t_1, t_2 \in T;$$

3) ковариационная функция удовлетворяет неравенству Коши-Буняковского

$$|R_{\xi}(t_1, t_2)|^2 \leqslant R_{\xi}(t_1, t_1)R_{\xi}(t_2, t_2) \quad \forall t_1, t_2 \in T;$$

4) для всех $t_1, t_2, t_3 \in T$ имеет место неравенство

$$|R_{\xi}(t_1, t_3) - R_{\xi}(t_2, t_3)|^2 \leqslant$$

$$\leq R_{\xi}(t_3, t_3)[R_{\xi}(t_1, t_1) + R_{\xi}(t_2, t_2) - 2\operatorname{Re} R_{\xi}(t_1, t_2)].$$
 (2.6)

Если даны два гильбертовых случайных процесса, то можно определить их взаимную ковариационную функцию (см. определение 1.19).

Замечание. Если $\xi(t)=X(t)+iY(t)$, где $X(t),\,Y(t)$ — центрированные действительные процессы с конечными дисперсиями, то

$$\begin{split} R_{\xi}(t,s) &= \mathbf{M}\{(X(t)+iY(t))(X(s)-iY(s))\} = \\ &= R_X(t,s) + R_Y(t,s) - i[R_{XY}(t,s) - R_{YX}(t,s)]. \end{split}$$

T е о р е м а 2.2. Для всякой неотрицательно-определенной функции $R(t,s),\ t,s\in T$ существует гильбертов случайный процесс $\{\xi(t),\ t\in T\}$ с ковариационной функцией $R_{\xi}(t,s)=R(t,s)$.

Замечание. Для действительной ковариационной функции результат теоремы вытекает из примера 1.14. В этом случае процесс $\xi(t)$ можно выбрать действительным и гауссовским, поскольку заданная ковариационная функция обладает свойством неотрицательной определенности.

Класс ковариационных функций обладает следующими свойствами замкнутости относительно ряда операций.

T е о р е м а 2.3. Пусть R_{ξ_1} , R_{ξ_2} — ковариационные функции некоторых случайных процессов, определенных на одном и том же множестве T. Тогда $\alpha_1 R_{\xi_1} + \alpha_2 R_{\xi_2}$ при $\alpha_1, \alpha_2 \geqslant 0$ также является ковариационной функцией некоторого гильбертова процесса.

Теорема 2.4. Пусть $\{R_{\xi_n}(t,s),\ n=1,2,\ldots\}$ — последовательность ковариационных функций некоторых гильбертовых случайных процессов, определенных на одном и том же множестве T. Тогда если $R_{\xi_n}(t,s) \to R(t,s)$ при $n \to \infty$ для всех $t,s \in T$, то R(t,s) также является ковариационной функцией некоторого гильбертова случайного процесса.

Замечание. Доказательство этих теорем становится очевидным, если принять во внимание, что при сложении ковариационных функций с неотрицательными весами и при предельном переходе свойство неотрицательной определенности сохраняется.

Поведение траекторий гильбертовых процессов определяется свойствами его ковариационной функции лишь в некотором усредненном смысле. Подробно свойства траекторий этого класса процессов (непрерывность, дифференцируемость и интегрируемость) рассматриваются в гл. III.

Заметим, что линейная комбинация гильбертовых процессов также является процессом этого типа.

Пример 2.7. Пусть $\xi(t), \eta(t)$ — определенные на T гильбертовы процессы. Показать, что

$$\gamma(t) = \alpha \xi(t) + \beta \eta(t), \qquad |\alpha|^2 + |\beta|^2 < \infty,$$

также является гильбертовым процессом.

Решение. В силу неравенства $|\gamma(t)|^2 \leqslant 2\left(|\alpha\xi(t)|^2+|\beta\eta(t)|^2\right)$ находим

$$\mathbf{M}\big\{|\gamma(t)|^2\big\}\leqslant 2\left(|\alpha|^2\mathbf{M}\big\{|\xi(t)|^2\big\}+|\beta|^2\mathbf{M}\big\{|\eta(t)|^2\big\}\right),$$

где $\mathbf{M}\big\{|\xi(t)|^2\big\}<\infty$ и $\mathbf{M}\big\{|\eta(t)|^2\big\}<\infty$, поскольку $\xi(t)$, $\eta(t)$ — гильбертовы процессы. Следовательно, $\mathbf{M}\big\{|\gamma(t)|^2\big\}<\infty$, что и требовалось доказать.

2.3. Стационарные случайные процессы. Важным классом случайных процессов являются стационарные процессы. Свойство стационарности означает независимость некоторых характеристик сечений процесса от времени. Конечно, для реальных процессов это условие весьма ограничительно, однако оно выполняется довольно часто, если рассматривать процесс на достаточно коротком интервале времени, в течение которого вероятностные характеристики процесса изменяются мало.

О пределение 2.4. Случайный процесс $\{\xi(t), t \in T\}$ называется *стационарным в узком смысле*, если для любого набора $t_1, \ldots, t_k \in T$ совместное распределение случайных величин $\xi(t_1+\tau), \ldots, \xi(t_k+\tau)$ одно и то же для всех τ , таких, что $t_1+\tau, \ldots, t_k+\tau \in T$.

Если су ществует математическое ожидание такого процесса, то оно постоянно и равно

$$\mathbf{M}\{\xi(t)\} = \mathbf{M}\{\xi(0)\}\,,$$

а ковариационная функция $R_{\xi}(t,s)$ (при условии существования второго момента) зависит лишь от разности (t-s).

О пределение 2.5. Случайный процесс $\{\xi(t),\,t\in T\}$ называется стационарным в широком смысле, если для любых $t,s\in T$, таких, что $t-s\in T$

$$\mathbf{M}\{\xi(t)\} = \text{const}, \quad \mathbf{cov}\{\xi(t), \xi(s)\} = C(t-s).$$

Примером стационарного в широком смысле процесса является рассмотренный выше центрированный процесс из примера 2.6, ковариационная функция которого равна $De^{i\omega(t-s)}$.

Пример 2.8. Пусть задан гауссовский процесс $\{\xi(t), t \in T\}$ с постоянным математическим ожиданием $\mathbf{M}\{\xi(t)\} \equiv m$ и ковариационной функцией $R_{\xi}(t,s) \equiv C(t-s)$. Показать, что этот процесс является стационарным в узком смысле.

Решение. Характеристическая функция k-мерного распределения процесса $\xi(t)$ для $t_1,\ldots,t_k\in T$ имеет вид

$$\Psi_{\xi}(z_1, \ldots, z_k; t_1, \ldots, t_k) = \exp\left(i \sum_{j=1}^k z_j m - \frac{1}{2} \sum_{l=1}^k \sum_{j=1}^k C(t_l - t_j) z_l z_j\right)$$

и не изменяется при замене всех t_l на $t_l+\tau,\ l=1,\dots,k$. Следовательно, и сами k-мерные распределения не изменяются при замене всех t_l на $t_l+\tau,$ причем это верно при всех $k\geqslant 1$ и любых $\tau,$ таких, что $t_l+\tau\in T.$

Пример 2.9. Пусть $\{w(t),\ t\geqslant 0\}$ — процесс броуновского движения и $\tau>0$. Показать, что процесс $Z(t)=w(t+\tau)-w(t),\ t\geqslant 0,$ является стационарным, и найти его ковариационную функцию.

Решение. Определим моментные характеристики процесса Z(t). Поскольку $\mathbf{M}\{w(t)\} = \mathbf{M}\{w(t+\tau)\} = 0$, то $\mathbf{M}\{Z(t)\} = 0$ и

$$\begin{split} R_Z(t,s) &= \mathbf{cov}\{Z(t),Z(s)\} = \mathbf{M}\{(w(t+\tau)-w(t))(w(s+\tau)-w(s))\} = \\ &= \min{(t+\tau,s+\tau)} - \min{(t,s+\tau)} - \min{(t+\tau,s)} + \min{(t,s)} = \\ &= \left\{ \begin{array}{ll} \tau - |t-s| & \text{при} & |t-s| \leqslant \tau, \\ 0 & \text{при} & |t-s| > \tau. \end{array} \right. \end{split}$$

Таким образом, $R_Z(t,s) = C(t-s)$, что и доказывает стационарность процесса Z(t).

Непосредственно из свойств ковариационной функции гильбертова процесса (см. теорему 2.1) вытекают следующие свойства ковариационной функции стационарного в широком смысле процесса.

T е о р е м а 2.5. Пусть C(t) — ковариационная функция некоторого стационарного в широком смысле процесса, заданного на T, тогда она обладает следующими свойствами:

- 1) $C(0) \ge 0$;
- 2) $C(t) = \overline{C(-t)}$ для всех $t \in T$;
- 3) $|C(t)| \leq C(0)$ dia $\sec x \ t \in T$;
- 4) $|C(t_1) C(t_2)|^2 \leqslant 2C(0)[C(0) \operatorname{Re} C(t_1 t_2)]$ для всех $t_1, t_2 \in T$.

Свойства стационарных случайных последовательностей и случайных функций подробно рассматриваются в гл. II и III. Там же будут введены спектральные характеристики стационарных процессов, которые являются удобной альтернативой рассмотренным моментным характеристикам и широко используются для решения разнообразных прикладных задач.

2.4. Марковские процессы. Марковские случайные процессы обладают важным свойством независимости будущего поведения от всего прошлого. Это свойство называется *отсутствием последействия*. Иначе говоря, если рассматривать текущее состояние процесса $\xi(t)$ в момент времени $t \in T$ как «настоящее», совокупность всех возможных состояний $\{\xi(s), s < t\}$ как «прошлое», а совокупность возможных состояний $\{\xi(u), u > t\}$ как «будущее», то для марковского процесса при фиксированном «настоящем» «будущее» не зависит от «прошлого». При этом семейство распределений процесса для u > t зависит лишь от состояния процесса в момент времени t.

Определение 2.6. Вещественный случайный процесс $\{\xi(t), t\in T\}$ называется марковским процессом или процессом Маркова, если для любых $t_l\in T$: $t_1<\ldots< t_{k-1}< t_k,\ l=1,\ldots,k$, произвольного целого k>1 и любого борелевского множества $B\in \mathcal{B}(\mathbb{R}^1)$ выполнено

равенство

$$\mathbf{P}\{\xi(t_k) \in B \mid \xi(t_1), \dots, \xi(t_{k-1})\} =$$

$$= \mathbf{P}\{\xi(t_k) \in B \mid \xi(t_{k-1})\} \quad (\mathbf{P}\text{-}\pi.H.). \quad (2.7)$$

Свойство (2.7) называется марковским свойством.

Замечание. В соотношении (2.7) условные вероятности определяются относительно σ -алгебры, порожденной случайными величинами $\{\xi(t_1),\ldots,\xi(t_{k-1})\}$ (в левой части) и σ -алгебры, порожденной только $\xi(t_{k-1})$ (в правой части). Соотношение (2.7) можно записать также в виде

$$\mathbf{P}\{\xi(t_k) \in B \mid \xi(t_1) = x_1, \dots, \xi(t_{k-1}) = x_{k-1}\} =$$

$$= \mathbf{P}\{\xi(t_k) \in B \mid \xi(t_{k-1}) = x_{k-1}\},\,$$

где $x_l \in \mathbb{R}^1$ — произвольное допустимое значение случайной величины $\xi(t_l),\, l=1,\ldots,k.$

Таким образом, вероятностное распределение состояния процесса в момент времени t_k зависит лишь от того, в каком состоянии находился процесс в ближайшем прошлом, т. е. при $t=t_{k-1}$, но не зависит от его состояний, предшествующих моменту времени t_{k-1} . Можно показать (см. задачу 10), что для марковского процесса при любых $B_1, B_2 \in \mathcal{B}(\mathbb{R}^1)$ и $s \leqslant u \leqslant t$

$$\mathbf{P}\{\xi(s) \in B_1, \, \xi(t) \in B_2 \mid \xi(u)\} =$$

$$= \mathbf{P}\{\xi(s) \in B_1 \mid \xi(u)\} \, \mathbf{P}\{\xi(t) \in B_2 \mid \xi(u)\} \quad (\mathbf{P}\text{- fi. H.}). \quad (2.8)$$

Определение 2.7. *Переходная вероятность марковского прочесса* определяется как

$$P(s, x, t, B) = P\{\xi(t) \in B \mid \xi(s) = x\}$$

при $t>s,\,x\in\mathbb{R}^1,\,B\in\mathcal{B}(\mathbb{R}^1)$ и удовлетворяет соотношению

$$\mathsf{P}(s,x,t,B) = \int\limits_{\mathbb{P}^1} \mathsf{P}(s,x,u,dy) \, \mathsf{P}(u,y,t,B),$$

которое выполняется для всех $s,u,t\in T$: $s\leqslant u\leqslant t$ и называется ypae-иением Koлмогорова-Чепмена.

Определение 2.8. Марковский процесс называется *однород*ным, если

$$\mathbf{P}\{\xi(t) \in B \mid \xi(s) = x\} = \mathsf{P}(0, x, t - s, B).$$

Далее для краткости будем писать $P(0, x, \tau, B) = P(x, \tau, B)$.

Для однородного марковского процесса уравнение Колмогорова— Чепмена упрощается:

$$P(x, s+t, B) = \int_{\mathbb{R}^1} P(x, s, dy) P(y, t, B),$$

где $s, t, s + t \in T$.

Для определения конечномерных распределений марковского процесса достаточно знать его переходную вероятность и одномерное распределение в некоторый начальный момент времени, поскольку с использованием формулы полной вероятности и марковского свойства легко получается соотношение

$$\mathbf{P}\{\xi(t_1) \in B_1, \dots, \xi(t_k) \in B_k\} =$$

$$= \int_{\mathbb{R}^1} \pi(dx_0) \int_{B_1} \mathsf{P}(0, x_0, t_1, dx_1) \dots \int_{B_k} \mathsf{P}(t_{k-1}, x_{k-1}, t_k, dx_k), \quad (2.9)$$

где $0 = t_0 < t_1 < \ldots < t_k$, $B_1, \ldots, B_k \in \mathcal{B}(\mathbb{R}^1)$, а $\pi(B) = \mathbf{P}\{\xi(0) \in B\}$. Если переходная вероятность и начальное распределение вероятностей процесса $\xi(t)$ имеют плотности, т.е. существуют $\mathbf{p}(s, x, t, y)$, $p_{\xi}(x; 0)$, такие, что для всех $B \in \mathcal{B}(\mathbb{R}^1)$

$$\mathsf{P}(s,x,t,B) = \int_{B} \mathsf{p}(s,x,t,y) \, dy, \qquad \pi(B) = \int_{B} p_{\,\xi}(x_0;\, 0) \, dx_0,$$

то и любое распределение k-го порядка также имеет плотность:

$$p_{\xi}(x_1, \dots, x_k; t_1, \dots, t_k) = \int_{\mathbb{R}^1} \prod_{i=1}^k \mathsf{p}(t_{i-1}, x_{i-1}, t_i, x_i) \, p_{\xi}(x_0; 0) \, dx_0.$$
(2.10)

Функция p(s, x, t, y) называется nepexodhoй плотностью распределения марковского процесса и при всех $s, t \in T$ и $x, y \in \mathbb{R}^1$ удовлетворяет соотношениям:

- 1) $p(s, x, t, y) \ge 0$ (условие неотрицательности);
- $(x,y) = \sum_{\mathbb{R}^1} \mathsf{p}(s,x,t,y) \, dy = 1$ (условие нормировки).

Приведем некоторые примеры марковских процессов.

 Π р и м е р 2.10. Рассмотрим последовательность бросаний симметричной игральной кости. Пусть случайная величина X_n есть число очков, выпавшее на грани при n-м бросании, $n=1,2,\ldots$ Введем последовательность случайных величин по правилу

$$\xi(n) = \max(X_1, \dots, X_n).$$

Показать, что последовательность $\xi(n)$ — марковская, и определить для нее переходную вероятность.

Решение. Пусть при некотором $n\geqslant 1,\ \xi(n)=i,$ где i — целое число от 1 до 6. При последующих бросаниях значение ξ не может уменьшиться, поэтому для $j=1,\ldots,6$

$$\mathbf{P}\{\xi(n+1) = j \mid \xi(n) = i\} = \begin{cases} 0 & \text{при } j < i, \\ i/6 & \text{при } j = i, \\ 1/6 & \text{при } j > i. \end{cases}$$

В силу независимости результатов бросаний условная вероятность перехода зависит лишь от $\xi(n)=i$ и не зависит от последовательности предыдущих значений ξ . Итак, в данном случае последовательность является марковской, а переходная вероятность (за один шаг) описывается матрицей P, элементы которой равны $P_{ij} = \mathbf{P}\{\xi(n+1) = j \mid \xi(n) = i\}, i, j = 1, \ldots, 6$.

Замечание. Случайная последовательность, описанная в примере 2.10, относится к классу дискретных цепей Маркова с конечным множеством состояний. Более подробно этот класс последовательностей изучается в гл. II.

Процесс, о котором пойдет речь в следующем примере, относится к классу марковских случайных функций.

Пример 2.11. Показать, что процесс броуновского движения — марковский, и найти его переходную вероятность.

Решение. В примере 2.5 мы нашли плотность конечномерного распределения процесса броуновского движения. Для вычисления плотности условного распределения воспользуемся формулой (2.4) с учетом того, что $t_1 < \ldots < t_{k-1} < t_k$:

$$\begin{split} p_{\xi}\left(x_{k};\,t_{k}\mid\xi(t_{1})=x_{1},\,\ldots,\xi(t_{k-1})=x_{k-1}\right) &=\\ &=\frac{p_{\xi}(x_{1},\,\ldots,x_{k};\,t_{1},\,\ldots,t_{k})}{p_{\xi}(x_{1},\,\ldots,x_{k-1};\,t_{1},\,\ldots,t_{k-1})} =\\ &=\prod_{i=1}^{k}(2\pi(t_{i}-t_{i-1}))^{-1/2}\exp\left\{-(x_{i}-x_{i-1})^{2}/2(t_{i}-t_{i-1})\right\} \\ &=\prod_{i=1}^{k}(2\pi(t_{i}-t_{i-1}))^{-1/2}\exp\left\{-(x_{i}-x_{i-1})^{2}/2(t_{i}-t_{i-1})\right\} \\ &=\frac{1}{\sqrt{2\pi(t_{k}-t_{k-1})}}\exp\left\{-\frac{(x_{k}-x_{k-1})^{2}}{2(t_{k}-t_{k-1})}\right\} = p_{\xi}\left(x_{k};\,t_{k}\mid\xi(t_{k-1})=x_{k-1}\right). \end{split}$$

Таким образом, процесс броуновского движения — марковский, а его переходная вероятность $\mathsf{P}(s,x,t,\cdot)$ при фиксированных $x\in\mathbb{R}^1,\ s< t$ представляет собой гауссовское распределение $\mathcal{N}(x;t-s)$.

В следующем примере мы получим условие того, что гауссовский процесс является марковским.

Пример 2.12. Рассматривается центрированный гауссовский процесс $\xi(t)$ с дисперсией $D_{\xi}(t)>0$. Показать, что $\xi(t)$ является марковским тогда и только тогда, когда его ковариационная функция $R_{\xi}(t,s)$ удовлетворяет при $t_1\leqslant t_2\leqslant t_3$ равенству

$$R_{\xi}(t_1, t_3) = \frac{R_{\xi}(t_1, t_2) R_{\xi}(t_2, t_3)}{R_{\xi}(t_2, t_2)}.$$
 (2.11)

Решение. Покажем необходимость. С использованием марковского свойства (2.8) при $t_1\leqslant t_2\leqslant t_3$ находим

$$R_{\xi}(t_1, t_3) = \mathbf{M}\{\xi(t_1)\xi(t_3)\} = \mathbf{M}\{\mathbf{M}\{\xi(t_1)\xi(t_3)\} \mid \xi(t_2)\} =$$
$$= \mathbf{M}\{\mathbf{M}\{\xi(t_1) \mid \xi(t_2)\} \mathbf{M}\{\xi(t_3) \mid \xi(t_2)\}\}.$$

При этом в силу теоремы о нормальной корреляции (см. п. 14.6) имеем $\mathbf{M}\{\xi(t_j)\mid \xi(t_2)\} = \frac{R_\xi(t_j,t_2)}{R_\xi(t_2,t_2)}\,\xi(t_2) \ \text{при } j=1,3. \ \text{Следовательно},$

$$\begin{split} R_{\xi}(t_1, t_3) &= \mathbf{M} \left\{ \frac{R_{\xi}(t_1, t_2)}{R_{\xi}(t_2, t_2)} \, \xi(t_2) \frac{R_{\xi}(t_3, t_2)}{R_{\xi}(t_2, t_2)} \, \xi(t_2) \right\} = \\ &= \frac{R_{\xi}(t_1, t_2) R_{\xi}(t_2, t_3)}{R_{\xi}^2(t_2, t_2)} \, \mathbf{M} \big\{ \xi^2(t_2) \big\} = \frac{R_{\xi}(t_1, t_2) R_{\xi}(t_2, t_3)}{R_{\xi}(t_2, t_2)}. \end{split}$$

Тем самым требуемое равенство (2.11) доказано.

Теперь установим обратное утверждение. Докажем, что гауссовский процесс $\xi(t)$, ковариационная функция которого удовлетворяет соотношению (2.11), является марковским.

В силу определения 2.6 марковское свойство процесса $\xi(t)$ означает совпадение условных распределений:

$$F_{\xi}(x_n; t_n \mid \xi(t_1) = x_1, \dots, \xi(t_{n-1}) = x_{n-1}) = F_{\xi}(x_n; t_n \mid \xi(t_{n-1}) = x_{n-1})$$

при всех $t_1\leqslant\ldots\leqslant t_{n-1}\leqslant t_n$. Поэтому в силу гауссовости процесса $\xi(t)$ достаточно установить равенства следующих условных характеристик:

$$\mathbf{M}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-1})\} = \mathbf{M}\{\xi(t_n) \mid \xi(t_{n-1})\}, \tag{2.12}$$

$$\mathbf{D}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-1})\} = \mathbf{D}\{\xi(t_n) \mid \xi(t_{n-1})\}. \tag{2.13}$$

Докажем сначала равенство (2.12). При n=2 оно тривиально. При произвольном $n\geqslant 3$ предположим, что (2.12) выполнено для любого числа моментов времени, не большего n-1.

Обозначим
$$v = \xi(t_{n-1}) - \mathbf{M}\{\xi(t_{n-1}) \mid \xi(t_1), \dots, \xi(t_{n-2})\}$$
, тогда

$$\mathbf{M}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-2}), \xi(t_{n-1})\} = \mathbf{M}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-2}), v\}.$$

Нетрудно проверить, что $\mathbf{cov}\{v,\xi(t_i)\}=0$, $i=1,\ldots,n-2$, поэтому с учетом $\mathbf{M}\{\xi(t)\}=0$ и гауссовости случайного процесса $\xi(t)$ (см. свойство 6 из п. 14.6) получаем

$$\mathbf{M}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-1})\} = \mathbf{M}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-2})\} + \\ + \mathbf{M}\{\xi(t_n) \mid v\} = \mathbf{M}\{\xi(t_n) \mid \xi(t_{n-2})\} + \mathbf{M}\{\xi(t_n) \mid v\},$$

где второе равенство получено в силу предположения индукции. Далее, в силу теоремы о нормальной корреляции находим

$$\mathbf{M}\{\xi(t_n) \mid \xi(t_{n-2})\} = \frac{R_{\xi}(t_n, t_{n-2})}{R_{\xi}(t_{n-2}, t_{n-2})} \xi(t_{n-2}), \qquad \mathbf{M}\{\xi(t_n) \mid v\} = \gamma v,$$

где $\gamma = \mathbf{cov}\{\xi(t_n), v\} \mathbf{D}\{v\}^{-1}$. По предположению индукции имеем

$$v = \xi(t_{n-1}) - \mathbf{M}\{\xi(t_{n-1}) \mid \xi(t_{n-2})\} = \xi(t_{n-1}) - \frac{R_{\xi}(t_{n-1}, t_{n-2})}{R_{\xi}(t_{n-2}, t_{n-2})} \xi(t_{n-2}),$$

следовательно,

$$\begin{split} \mathbf{cov}\{\xi(t_n),v\} &= R_{\xi}(t_n,t_{n-1}) - \frac{R_{\xi}(t_{n-1},t_{n-2})R_{\xi}(t_n,t_{n-2})}{R_{\xi}(t_{n-2},t_{n-2})}, \\ \mathbf{D}\{v\} &= R_{\xi}(t_{n-1},t_{n-1}) - \frac{R_{\xi}^2(t_{n-1},t_{n-2})}{R_{\xi}(t_{n-2},t_{n-2})}, \\ \gamma &= \frac{R_{\xi}(t_{n-2},t_{n-2})R_{\xi}(t_n,t_{n-1}) - R_{\xi}(t_{n-1},t_{n-2})R_{\xi}(t_n,t_{n-2})}{R_{\xi}(t_{n-2},t_{n-2})R_{\xi}(t_{n-1},t_{n-1}) - R_{\xi}^2(t_{n-1},t_{n-2})}. \end{split}$$

Нетрудно проверить, что из условия (2.11) следует соотношение

$$\frac{R_{\xi}(t_n, t_{n-2})}{R_{\xi}(t_{n-2}, t_{n-2})} - \gamma \frac{R_{\xi}(t_{n-1}, t_{n-2})}{R_{\xi}(t_{n-2}, t_{n-2})} = 0,$$

поэтому

$$\mathbf{M}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-1})\} = \frac{R_{\xi}(t_n, t_{n-2})}{R_{\xi}(t_{n-2}, t_{n-2})} \, \xi(t_{n-2}) +$$

$$+ \gamma \left(\xi(t_{n-1}) - \frac{R_{\xi}(t_{n-1}, t_{n-2})}{R_{\xi}(t_{n-2}, t_{n-2})} \, \xi(t_{n-2}) \right) = \gamma \, \xi(t_{n-1}).$$

Полученное равенство немедленно влечет (2.12).

Теперь доказательство (2.13) получается применением теоремы о нормальной корреляции и установленного равенства (2.12):

$$\mathbf{D}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-1})\} =$$

$$= \mathbf{D}\{\xi(t_n) - \mathbf{M}\{\xi(t_n) \mid \xi(t_1), \dots, \xi(t_{n-1})\}\} =$$

$$= \mathbf{D}\{\xi(t_n) - \mathbf{M}\{\xi(t_n) \mid \xi(t_{n-1})\}\} = \mathbf{D}\{\xi(t_n) \mid \xi(t_{n-1})\}.$$

Тем самым достаточность условия (2.11) полностью доказана. ■

Пример 2.13. Показать, что процесс броуновского движения является марковским, используя результат примера 2.12.

Решение. Так как, по определению, броуновское движение — центрированный гауссовский процесс с дисперсией $D_{\xi}(t) > 0$ при t > 0, то нам достаточно проверить выполнение соотношения (2.11) для $R_{\xi}(t,s) = \min(t,s)$ и $0 < t_1 \leqslant t_2 \leqslant t_3$:

$$\frac{\min(t_1, t_2) \min(t_2, t_3)}{\min(t_2, t_2)} = \frac{t_1 t_2}{t_2} = \min(t_1, t_3) = R_{\xi}(t_1, t_3). \quad \blacksquare$$

Если случайный марковский процесс $\xi(t)$ подвергается функциональному преобразованию $\eta(t)=f(\xi(t))$ с некоторой функцией $f(\cdot)$, то процесс $\eta(t)$ может оказаться немарковским. Следующий пример показывает, что свойство марковости сохраняется для взаимно однозначных преобразований.

Пример 2.14. Пусть $\xi(t)$ — марковский процесс, а $f:\mathbb{R}^1\to\mathbb{R}^1$ — некоторая взаимно однозначная борелевская функция. Показать, что $\eta(t)=f(\xi(t))$ — марковский процесс.

Решение. Проверим выполнение условия (2.8), т.е. убедимся в том, что для произвольных множеств $B_1, B_2 \in \mathcal{B}(\mathbb{R}^1)$ и s < u < t

$$\mathbf{P}\{\eta(s) \in B_1, \, \eta(t) \in B_2 \mid \eta(u)\} =$$

$$= \mathbf{P}\{\eta(s) \in B_1 \mid \eta(u)\} \mathbf{P}\{\eta(t) \in B_2 \mid \eta(u)\} \quad (\mathbf{P}\text{-11.H.}). \quad (2.14)$$

В силу взаимной однозначности $f(\cdot)$ σ -алгебры, порожденные случайными величинами $\xi(u)$ и $\eta(u)=f(\xi(u))$ (см. определение 14.6), совпадают. Следовательно, (2.14) равносильно следующему равенству

$$\mathbf{P}\{\xi(s) \in f^{-1}(B_1), \, \xi(t) \in f^{-1}(B_2) \mid \xi(u)\} = \mathbf{P}\{\xi(s) \in f^{-1}(B_1) \mid \xi(u)\} \times \mathbf{P}\{\xi(s) \in f^{-1}(B_1), \, \xi(t) \in f^{-1}(B_2) \mid \xi(u)\} = \mathbf{P}\{\xi(s) \in f^{-1}(B_1), \, \xi(t) \in f^{-1}(B_2) \mid \xi(u)\} = \mathbf{P}\{\xi(s) \in f^{-1}(B_1), \, \xi(t) \in f^{-1}(B_2) \mid \xi(u)\} = \mathbf{P}\{\xi(s) \in f^{-1}(B_1), \, \xi(t) \in f^{-1}(B_2), \, \xi(u)\} = \mathbf{P}\{\xi(s) \in f^{-1}(B_1), \, \xi(u)\} = \mathbf{P}\{\xi(u)\} = \mathbf{P}\{$$

$$\times \mathbf{P}\{\xi(t) \in f^{-1}(B_2) \mid \xi(u)\} \quad (\mathbf{P}\text{-}\pi.\text{H.}), \quad (2.15)$$

где учтено $\{\eta(s) \in B_1\} = \{\xi(s) \in f^{-1}(B_1)\}, \{\eta(t) \in B_2\} = \{\xi(t) \in f^{-1}(B_2)\}, f^{-1}(B_i) \in \mathcal{B}(\mathbb{R}^1), i = 1, 2$. Теперь из условия (2.8) марковости процесса $\xi(t)$ непосредственно вытекает соотношение (2.15), что и требовалось доказать.

Задача 11 показывает, что при отсутствии взаимной однозначности отображения $f(\cdot)$ марковское свойство не сохраняется даже в очень простых случаях.

2.5. Диффузионные процессы. Важным подклассом марковских процессов являются процессы с непрерывным временем и непрерывным множеством состояний. Такие процессы являются естественной моделью для описания эволюции динамических систем, подверженных случайным воздействиям. Наиболее изученными в настоящее время являются процессы диффузионного типа или просто диффузионные процессы.

Определение 2.9. Случайный n-мерный однородный марковский процесс $\xi(t)$ называется $npoueccom\ \partial u \phi \phi y з u o n u n a$, если его переходная вероятность P(x,t,B) удовлетворяет следующим условиям.

$$\lim_{t \downarrow 0} \frac{1}{t} \int_{|y-x| > \delta} \mathsf{P}(x, t, dy) = 0, \tag{2.16}$$

$$\lim_{t \downarrow 0} \frac{1}{t} \int_{|y-x| \le \delta} (y-x) P(x,t,dy) = a(x), \tag{2.17}$$

$$\lim_{t \downarrow 0} \frac{1}{t} \int_{|y-x| \le \delta} (y-x)(y-x)^* P(x,t,dy) = \Sigma(x)$$
 (2.18)

для любых $\delta > 0$, $x \in \mathbb{R}^n$.

Замечание. Первое условие обеспечивает (${\bf P}$ -п.н.) непрерывность траекторий процесса. Функция a(x) характеризует среднюю скорость смещения за малое время из состояния $\xi(0)=x$ и называется вектором сноса или дрейфа. Функция $\Sigma(x)$ характеризует отклонение процесса от его усредненного движения, определяемого вектором сноса, и называется матрицей диффузии.

Если для марковского процесса $\{\xi(t), t \geq 0\}$ задана его переходная вероятность и соответствующие пределы в (2.16)–(2.18) определены, то тем самым определены его матричные коэффициенты сноса a(x) и диффузии $\Sigma(x)$. Однако центральный результат теории диффузионных процессов состоит в том, что, задав достаточно регулярные функции a(x) и $\Sigma(x)$, можно однозначно определить и переходную вероятность процесса. Таким образом, локальное описание свойств траектории на языке коэффициентов сноса и диффузии позволяет определить и общие свойства процесса на всей временной оси. Метод построения переходной вероятности предложен А.Н. Колмогоровым.

Общая теория диффузионных процессов весьма сложна, поэтому мы изложим этот метод, не вдаваясь в технические детали.

Рассмотрим скалярный случай $\xi(t) \in \mathbb{R}^1$. Предположим, что переходная вероятность имеет плотность, т.е. для всякого $B \in \mathcal{B}(\mathbb{R}^1)$ выполняется

 $P(x,t,B) = \int_{B} p(x,t,y) dy.$

А.Н. Колмогоров показал, что при некоторых ограничениях на $\mathsf{p}(x,t,y),\,a(x)$ и $\Sigma(x)$ плотность $\mathsf{p}(x,t,y)$ удовлетворяет *прямому уравнению*

$$\frac{\partial p(x,t,y)}{\partial t} = -\frac{\partial \left(p(x,t,y)a(y)\right)}{\partial y} + \frac{1}{2} \cdot \frac{\partial^2 \left(p(x,t,y)\Sigma(y)\right)}{\partial y^2}.$$
 (2.19)

Уравнение (2.19) также известно как уравнение Колмогорова-Фоккера-Планка. При любом $x \in \mathbb{R}^1$ и $t \geqslant 0$ уравнение решается при следующем выборе начального условия:

$$\lim_{t \downarrow 0} \mathsf{p}(x, t, y) = \delta(y - x).$$

Если $p_{\xi}(y;t)$ — плотность распределения сечения $\xi(t)$, то

$$p_{\,\xi}(y;\,t) = \int\limits_{\mathbb{R}^1} p_{\,\xi}(x;\,s) \, \mathsf{p}(x,t-s,y) \, dx.$$

Тогда из (2.19) получаем уравнение

$$\frac{\partial p_{\xi}(y;\,t)}{\partial t} = -\frac{\partial \left(p_{\xi}(y;\,t)a(y)\right)}{\partial y} + \frac{1}{2} \cdot \frac{\partial^2 \left(p_{\xi}(y;\,t)\Sigma(y)\right)}{\partial y^2},$$

которое решается с начальным условием $p_{\xi}(y; 0) = p_{0}(y)$, где $p_{0}(y)$ — плотность распределения $\xi(0)$.

Пример 2.15. Показать, что процесс броуновского движения является диффузионным марковским процессом.

Решение. Действительно, пусть $\{\xi(t),\ t\geqslant 0\}$ — процесс броуновского движения. Как следует из примера 2.11, его переходная вероятность равна

$$P(x,t,B) = \frac{1}{\sqrt{2\pi t}} \int_{D} e^{-\frac{(y-x)^2}{2t}} dy.$$

Для вывода соотношений (2.16)—(2.18) воспользуемся известными оценками для функции $\Phi(x)$ стандартного гауссовского распределения $\mathcal{N}(0;1)$:

$$\left\{\frac{1}{x} - \frac{1}{x^3}\right\} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} < 1 - \Phi(x) < \frac{1}{x} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

С учетом выражения для гауссовской переходной плотности имеем

$$\frac{1}{t}\int\limits_{|y-x|>\delta}\mathsf{P}(x,t,dy)=\frac{2}{t}(1-\varPhi(\delta/\sqrt{t}))<\frac{2\,e^{-\delta^2/2t}}{\delta\sqrt{\pi t}}\to 0\quad\text{при}\quad t\downarrow 0,$$

поскольку $\sqrt{u}\,e^{-u}\to 0$ при $u\to\infty$, что доказывает соотношение (2.16). Далее, используя замену переменной $z=(y-x)/\sqrt{t}$, вычисляем

$$\frac{1}{t} \int_{|y-x| \le \delta} (y-x) P(x,t,dy) = \int_{|z| \le \delta/\sqrt{t}} \frac{1}{\sqrt{2\pi t}} z e^{-z^2/2} dz =$$

$$= \int_{|z| \le \delta/\sqrt{t}} \frac{1}{\sqrt{2\pi t}} d\left(-e^{-z^2/2}\right) = \frac{1}{\sqrt{2\pi t}} \left(-e^{-z^2/2}\right) \Big|_{-\delta/\sqrt{t}}^{\delta/\sqrt{t}} = 0 \quad \forall t > 0.$$

Таким образом, доказано соотношение (2.17), где a(x)=0. И наконец, используя ту же замену переменной $z=(y-x)/\sqrt{t}$, получаем

$$\frac{1}{t} \int\limits_{|y-x| \leqslant \delta} (y-x)^2 \, \mathsf{P}(x,t,dy) = \frac{1}{\sqrt{2\pi}} \int\limits_{|z| \leqslant \delta/\sqrt{t}} z^2 e^{-z^2/2} dz \to 1 \quad \text{при} \quad t \downarrow 0,$$

поскольку множество $\{z\colon |z|\leqslant \delta\big/\sqrt{t}\}\uparrow\mathbb{R}^1$. Тем самым доказано равенство (2.18), где $\Sigma(x)=1$.

Плотность $p_{\xi}(y;t)$ распределения процесса броуновского движения удовлетворяет уравнению Колмогорова, которое в данном случае имеет вид

$$\frac{\partial p_{\xi}(y;\,t)}{\partial t} - \frac{1}{2} \cdot \frac{\partial^2 p_{\xi}(y;\,t)}{\partial y^2} = 0, \qquad p_{\xi}(y;\,0) = \delta(y).$$

Указанное уравнение известно в теории уравнений математической физики как *уравнение диффузии*. Собственно, это и объясняет название описанного класса процессов. ■

В гл. III будет рассмотрен класс диффузионных процессов, которые описываются с помощью стохастических дифференциальных уравнений.

2.6. Задачи для самостоятельного решения.

1. Пусть $\xi(t)$ — гауссовский процесс с параметрами $m_{\xi}(t)$, $R_{\xi}(t,s)$. Вывести соотношение для плотности двумерного распределения. Привести условие существования плотности двумерного распределения.

Ответ.

$$p_{\,\xi}(x_1,x_2;\,t_1,t_2) = \frac{1}{2\pi\sqrt{R_\xi(t_1,t_1)R_\xi(t_2,t_2)-R_\xi^2(t_1,t_2)}}\,\exp\!\left\{-\frac{1}{2(1-\rho_\xi^2(t_1,t_2))}\,\times\right.$$

$$\times \left(\frac{(x_1-m_{\,\xi}(t_1))^2}{R_{\xi}(t_1,t_1)} - 2\rho_{\xi}(t_1,t_2)\frac{(x_1-m_{\,\xi}(t_1))(x_2-m_{\,\xi}(t_2))}{\sqrt{R_{\xi}(t_1,t_1)R_{\xi}(t_2,t_2)}} + \frac{(x_2-m_{\,\xi}(t_2))^2}{R_{\xi}(t_2,t_2)}\right)\right\},$$

где

$$\rho_{\xi}(t_1, t_2) = \frac{R_{\xi}(t_1, t_2)}{\sqrt{R_{\xi}(t_1, t_1)R_{\xi}(t_2, t_2)}}$$

есть коэффициент корреляции. Плотность существует, если $|\rho_{\xi}(t_1,t_2)| < 1$ при $t_1 \neq t_2$.

2. Для случайного процесса $\xi(t) = X \cos(\omega t + Y)$, где X, Y — независимы, случайная величина X имеет распределение с плотностью

$$p_X(x) = \left\{ \begin{array}{ll} 0, & x < 0, \\ xe^{-x^2/2}, & x \geqslant 0, \end{array} \right.$$

а Y имеет равномерное распределение на $[-\pi,\pi]$, доказать, что процесс $\xi(t)$ является гауссовским и найти его ковариационную функцию. Какими еще свойствами обладает $\xi(t)$?

У казание. Убедиться, что совместное распределение случайных величин $A=X\cos Y,\ B=X\sin Y$ — стандартное гауссовское. Далее использовать результат примера 2.1.

Ответ. $R_{\xi}(t,s) = \cos(\omega(t-s))$, процесс $\xi(t)$ является стационарным в узком смысле.

3. Пусть $\{\xi(t),\,t\geqslant 0\}$ — процесс броуновского движения. Показать, что процесс

$$X(t) = t \xi(t^{-1}), \quad t > 0, \quad X(0) = 0$$

также является процессом броуновского движения.

Указание. Проверить гауссовость и вычислить ковариационную функцию.

4. Пусть $\{\xi(t),\,t\geqslant 0\}$ — процесс броуновского движения. Показать, что при любом c>0 процесс

$$X(t) = \frac{1}{\sqrt{c}}\,\xi(ct)$$

также является процессом броуновского движения.

У казание. Проверить гауссовость и вычислить ковариационную функцию.

5. Пусть $\{\xi(t), t \ge 0\}$ — процесс броуновского движения. Процесс $Z(t) = \xi(t) - t \xi(1)$ называется *броуновским мостом* и удовлетворяет соотношению Z(0) = Z(1) = 0. Найти его среднее значение и ковариационную функцию.

Otbet. $m_{Z}(t) = 0$, $R_{Z}(t,s) = \min(t,s) - ts$.

4 Б.М. Миллер и А.Р. Панков

6. Пусть $\{Z(t), t \ge 0\}$ — броуновский мост (см. задачу 5). Определим процесс

$$Y(t) = (1+t) Z\left(\frac{t}{1+t}\right), \quad t \geqslant 0.$$

Показать, что $\{Y(t), t \ge 0\}$ есть процесс броуновского движения.

7. Какие из ниже перечисленных функций являются неотрицательноопределенными:

ределенными:
$$1) \ C(t,s) = \left\{ \begin{array}{l} 1, \quad |t-s| \leqslant 1, \\ 0, \quad |t-s| > 1; \end{array} \right.$$

$$2) \ C(t,s) = \left\{ \begin{array}{l} 1 - |t-s|, \quad |t-s| \leqslant 1, \\ 0, \quad |t-s| > 1; \end{array} \right.$$

$$3) \ C(t,s) = \exp\{i\omega(t-s)\}, \quad \omega \in \mathbb{R}^1;$$

$$4) \ C(t,s) = \exp\{|t-s|\};$$

$$5) \ C(t,s) = \exp\{-|t-s|\},$$

$$e -\infty < t, s < \infty;$$

где $-\infty < t, s < \infty$;

- 6) $C(t,s) = \min(t,s), \quad t,s \ge 0;$
- 7) $C(t,s) = \min(t,s) ts, \quad t,s \in [0,1].$

Указание. В пп. 2, 3, 5–7 функция C(t,s) соответствует ковариационной функции случайных процессов, рассмотренных ранее (см. примеры 2.9, 2.6, задачу 12 из § 1, пример 2.3, а также задачу 5). В п. 1 нарушается неравенство (2.6), а в п. 4 — неравенство Коши-Буняковского.

Ответ. Пп. 2, 3, 5-7.

8. Доказать теоремы 2.3 и 2.4.

Указание. См. замечание после формулировки теорем.

9. Доказать свойства ковариационной функции процесса, стационарного в широком смысле.

Указание. См. теорему 2.1 и замечание к ней.

10. Доказать, что для марковского процесса выполняется соотношение (2.8).

Указание. Воспользоваться соотношением (2.7).

11. Пусть $\{\xi(n),\, n=1,2,\,\ldots\}$ — марковская цепь с тремя возможными состояниями $\xi(n) \in \{1,2,3\}$ и переходными вероятностями $\mathbf{P}\{\xi(n+1) =$ $= j \mid \xi(n) = i \} = p_{ij} > 0$. Рассмотрим последовательность

$$\eta(n) = \left\{ \begin{array}{ll} \xi(n), & \text{если} & \xi(n) = 1, \\ \\ 2, & \text{если} & \xi(n) \neq 1. \end{array} \right.$$

Показать, что последовательность $\eta(n)$ может не обладать марковским свойством.

Указание. Найти выражения для вероятностей событий

$$\mathbf{P}\{\eta(n+1) = 1, \, \eta(n-1) = 1 \mid \eta(n) = 2\},$$

$$\mathbf{P}\{\eta(n+1) = 1 \mid \eta(n) = 2\}, \quad \mathbf{P}\{\eta(n-1) = 1 \mid \eta(n) = 2\}$$

и убедиться, что при некотором выборе переходных вероятностей соотношение (2.8) не выполняется.

12. Пусть $\{Z(t), t \geqslant 0\}$ — броуновский мост (см. задачу 5). Показать, что процесс Z(t) является марковским.

Указание. Проверить условие (2.11).

- **13.** (Продолжение задачи 12). Показать, что Z(t) и Z(1-t) одинаково распределены.
 - 14. Вывести соотношение (2.10) из общей формулы (2.9).
- **15.** Пусть задан однородный марковский процесс $\{\xi(t),\,t\geqslant 0\}$ с переходной вероятностью $\mathsf{P}(x,t,B),$ имеющей плотность

$$\mathsf{p}(x,t,y) = \frac{1}{\sqrt{2\pi t}} \exp\left\{-\frac{(y-x-at)^2}{2t}\right\}.$$

Показать, что данный процесс является диффузионным, и найти для него коэффициенты сноса и диффузии.

Ответ. $a(x) = a, \quad \Sigma(x) = 1.$

Указание. При вычислении коэффициента сноса находим, что

$$\frac{1}{t}\int\limits_{|y-x|\leqslant \delta} (y-x)\,\mathsf{P}(x,t,dy) = \int\limits_{|z|\leqslant \delta/\sqrt{t}} \frac{1}{\sqrt{2\pi t}}\,z\,e^{-\frac{(z-a\sqrt{t})^2}{2}}dz,$$

далее используем замену переменной $v=z-a\sqrt{t}$ и разбиваем интеграл на сумму двух интегралов

$$a\int\limits_{-(\delta/\sqrt{t})-a\sqrt{t}}^{(\delta/\sqrt{t})-a\sqrt{t}}\frac{1}{\sqrt{2\pi}}\,e^{-\frac{v^2}{2}}\,dv\to a \qquad \text{if} \qquad \int\limits_{-(\delta/\sqrt{t})-a\sqrt{t}}^{(\delta/\sqrt{t})-a\sqrt{t}}\frac{1}{\sqrt{2\pi t}}\,v\,e^{-\frac{v^2}{2}}\,dv\to 0$$

при $t\downarrow 0$. Коэффициент диффузии вычисляется аналогично примеру 2.15.

ГЛАВА ІІ

СЛУЧАЙНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

В данной главе будут изучаться случайные процессы с дискретным временем, которые обычно называют случайными последовательностями. В дальнейшем для обозначения случайной последовательности будем использовать сокращение СП.

§ 3. Стационарные случайные последовательности

3.1. Основные характеристики ССП. Пусть \mathcal{H} — пространство комплексных случайных величин $\xi = \alpha + i\beta$, где $\alpha, \beta \in \mathbb{R}^1$ — вещественные случайные величины, такие, что $\mathbf{M}\left\{\alpha^2 + \beta^2\right\} < \infty$. Для $\xi, \eta \in \mathcal{H}$ можно определить *скалярное произведение*

$$(\xi, \eta) = \mathbf{M}\{\xi \overline{\eta}\}, \tag{3.1}$$

где $\overline{\eta}=\alpha-i\beta$ — комплексно-сопряженная величина к $\eta=\alpha+i\beta,$ и $nop_{M}y$

$$\|\xi\| = \sqrt{(\xi, \xi)} = \sqrt{\mathbf{M}\{|\xi|^2\}},$$
 (3.2)

где $|\xi|^2 = \alpha^2 + \beta^2$. Пространство \mathcal{H} со скалярным произведением (3.1) и нормой (3.2) называется гильбертовым пространством случайных величин с конечным вторым моментом (см. п. 14.7).

Определение 3.1. Ковариацией случайных величин $\xi,\ \eta\in\mathcal{H}$ называется

$$\mathbf{cov}\{\xi,\eta\} = \mathbf{M}\left\{ (\xi - \mathbf{M}\{\xi\}) \overline{(\eta - \mathbf{M}\{\eta\})} \right\} = (\xi,\eta) - \mathbf{M}\{\xi\} \overline{\mathbf{M}\{\eta\}}. \quad (3.3)$$

Из соотношений (3.1), (3.3) следует, что при $\mathbf{M}\{\xi\} = \mathbf{M}\{\eta\} = 0$

$$\mathbf{cov}\{\xi,\eta\} = (\xi,\eta). \tag{3.4}$$

Рассмотрим последовательность ξ , составленную из комплексных случайных величин $\xi_n \in \mathcal{H}$, где n пробегает множество всех целых чисел $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$.

О пределение 3.2. Последовательность $\xi = \{\xi_n, n \in \mathbb{Z}\}$ называется *стационарной в широком смысле*, если для любых $n,k \in \mathbb{Z}$

$$\mathbf{M}\{\xi_n\} = \mathbf{M}\{\xi_0\}, \quad \mathbf{cov}\{\xi_{n+k}, \xi_k\} = \mathbf{cov}\{\xi_n, \xi_0\}.$$
 (3.5)

В дальнейшем стационарные в широком смысле последовательности будем называть кратко стационарными случайными последовательностиями (ССП). Кроме того, не умаляя общности, полагаем $\mathbf{M}\{\xi_0\}=0$. Это предположение позволяет отождествить ковариацию со скалярным произведением и применять методы и результаты теории гильбертовых пространств (см. п. 13.6).

Определение 3.3. Функция

$$R_{\xi}(n) = \mathbf{cov}\{\xi_n, \xi_0\}, \quad n \in \mathbb{Z}, \tag{3.6}$$

называется ковариационной функцией стационарной последовательности $\xi = \{\xi_n, n \in \mathbb{Z}\}.$

Если $R_{\xi}(0) = \mathbf{M}\{|\xi_0|^2\} \neq 0$, то функция

$$\rho_{\xi}(n) = \frac{R_{\xi}(n)}{R_{\varepsilon}(0)}, \quad n \in \mathbb{Z}$$
(3.7)

называется *корреляционной функцией ССП* ξ .

Из (3.5), (3.6) следует, что для любых $n, m \in \mathbb{Z}$

$$\mathbf{cov}\{\xi_n, \xi_m\} = R_{\xi}(n-m).$$

Ковариационная функция $R_{\xi}(n)$ обладает следующими свойствами, которые непосредственно вытекают из определения 3.3 и общих свойств ковариационной функции (см. п. 2.2).

1) Ковариационная функция $R_{\xi}(n)$ является неотрицательноопределенной, т. е. для любого набора комплексных чисел a_1, \ldots, a_m и моментов времени $n_1, \ldots, n_m \in \mathbb{Z}, m \geqslant 1$, имеет место неравенство

$$\sum_{i=1}^{m} \sum_{j=1}^{m} a_i \overline{a}_j R_{\xi}(n_i - n_j) \geqslant 0.$$

$$(3.8)$$

2) Дисперсия D_{ξ} ССП ξ постоянна и имеет вид

$$D_{\xi} = R_{\xi}(0) = \mathbf{M}\{|\xi_0|^2\} \geqslant 0.$$

3) Ковариационная функция является эрмитовой, т. е. $R_{\xi}(-n)==\overline{R_{\xi}(n)}$ для всех $n\in\mathbb{Z}$.

 $|A| |R_{\xi}(n)| \leqslant R_{\xi}(0)$ для всех $n \in \mathbb{Z}$.

Замечание. Если ξ — вещественная ССП, то $R_{\xi}(n)$ — вещественная неотрицательно-определенная функция, в частности, $R_{\xi}(n)$ — четная, т.е. $R_{\xi}(-n) = R_{\xi}(n)$.

Кроме ковариационной функции, которая относится к классу моментных характеристик (см. п. 1.4), при описании ССП используются также спектральные характеристики: спектральная функция и спектральная плотность.

Теорема 3.1 (Герглоти). Пусть $R_{\xi}(n)$ — ковариационная функция некоторой ССП $\xi = \{\xi_n, n \in \mathbb{Z}\}$. Тогда найдется однозначно определенная монотонно неубывающая вещественная функция $F_{\xi}(\lambda)$, $\lambda \in [-\pi, \pi]$, непрерывная справа на $[-\pi, \pi]$, $F_{\xi}(-\pi) = 0$, такая, что

$$R_{\xi}(n) = \int_{-\pi}^{\pi} e^{i\lambda n} dF_{\xi}(\lambda), \quad n \in \mathbb{Z}.$$
 (3.9)

Функция $F_{\xi}(\lambda)$, определенная в теореме 3.1, называется спектральной функцией ССП ξ .

Если $F_{\xi}(\lambda)$ при каждом $\lambda \in [-\pi, \pi]$ можно представить в виде

$$F_{\xi}(\lambda) = \int_{-\pi}^{\lambda} f_{\xi}(\nu) d\nu, \qquad (3.10)$$

то функция $f_{\xi}(\nu)$ называется спектральной плотностью ССП ξ . В силу монотонности $F_{\xi}(\lambda)$ выполнено $f_{\xi}(\nu) \geqslant 0, \ \nu \in [-\pi, \pi]$. В этом случае из (3.9) следует

$$R_{\xi}(n) = \int_{-\pi}^{\pi} e^{i\lambda n} f_{\xi}(\lambda) d\lambda, \quad n \in \mathbb{Z}.$$
 (3.11)

Заметим, что числа $R_{\xi}(n)$ равны коэффициентам разложения функции $f_{\xi}(\lambda)$ в ряд Фурье по системе функций $\{e^{i\lambda n},\ n\in\mathbb{Z}\}$, ортогональных на отрезке $[-\pi,\pi]$. Обратно, если $\sum_{n\in\mathbb{Z}}|R_{\xi}(n)|<\infty$, то ряд

Фурье с коэффициентами $R_{\xi}(n)$ абсолютно сходится к спектральной плотности ССП ξ для любого $\lambda \in [-\pi, \pi]$:

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} e^{-i\lambda n} R_{\xi}(n). \tag{3.12}$$

Для дисперсии $D_{\xi} = R_{\xi}(0)$ справедливо следующее выражение через спектральные характеристики:

$$D_{\xi} = \int_{-\pi}^{\pi} f_{\xi}(\lambda) d\lambda = F_{\xi}(\pi). \tag{3.13}$$

Замечание. Если ξ — вещественная ССП, то спектральная плотность $f_{\xi}(\lambda)$ также обладает свойством четности, т.е. $f_{\xi}(\lambda) = f_{\xi}(-\lambda)$, $\lambda \in [-\pi,\pi]$.

3.2. Примеры ССП. Приведем примеры некоторых, наиболее часто встречающихся ССП.

Пример 3.1. Пусть $\xi_n = \xi_0 g(n)$, где $\mathbf{M}\{\xi_0\} = 0$, $\mathbf{D}\{\xi_0\} = 1$ и g(n) — некоторая комплексная детерминированная функция. При каких условиях на g(n) последовательность $\{\xi_n\}$ стационарна? Определить ковариационную функцию такой последовательности.

Pешение. Последовательность $\xi = \{\xi_n, n \in \mathbb{Z}\}$ имеет

$$\mathbf{M}\{\xi_n\} = 0, \quad \mathbf{cov}\{\xi_{n+k}, \xi_k\} = g(n+k)\overline{g(k)}.$$

Следовательно, она будет стационарной в том и только том случае, если функция $g(n+k)\overline{g(k)}$ не зависит от k. Отсюда следует, что

$$g(n+k)\overline{g(k)} = g(n)\overline{g(0)} \quad \forall \, n \in \mathbb{Z}.$$

Таким образом, $g(n+1)/g(n) = \overline{g(0)}/\overline{g(1)} = \alpha = \mathrm{const},$ поэтому

$$g(n) = g(0) \alpha^n.$$

Далее, поскольку $\mathbf{D}\{\xi_n\} = \mathbf{D}\{\xi_0\} \, |g(0)|^2 |\alpha|^n = \mathrm{const},$ то $|\alpha|^n = |\alpha| = 1$ и существует число $\lambda \in [-\pi,\pi)$, такое, что $\alpha = e^{i\lambda}$. Таким образом, последовательность случайных величин $\xi_n = \xi_0 \, g(n)$ является стационарной, если $g(n) = g(0) \, \alpha^n$, т. е.

$$\xi_n = \xi_0 g(0) e^{i\lambda n}, \quad n \in \mathbb{Z}.$$

Тогда ее ковариационная функция

$$R_{\xi}(n) = \mathbf{D}\{\xi_0\} |g(0)|^2 e^{i\lambda n} = |g(0)|^2 e^{i\lambda n}. \quad \blacksquare$$

Следующий пример обобщает предыдущий.

Пример 3.2. Пусть задан набор комплексных центрированных случайных величин $\{z_1,\ldots,z_N\}\subset\mathcal{H}$, удовлетворяющих условию ортогональности, т. е.

$$(z_i,z_j) = \mathbf{cov}\{z_i,z_j\} = \left\{ \begin{array}{ll} \sigma_i^2 > 0 & \text{при} \quad i=j, \\ 0 & \text{при} \quad i \neq j. \end{array} \right.$$

Пусть $\lambda_1 < \lambda_2 < \ldots < \lambda_N$ — некоторые числа из полуинтервала $[-\pi,\pi)$. Случайная последовательность $\xi = \{\xi_n, n \in \mathbb{Z}\}$, называемая почти периодической, определена соотношением

$$\xi_n = \sum_{k=1}^{N} z_k e^{i\lambda_k n}, \quad n \in \mathbb{Z}. \tag{3.14}$$

Показать, что последовательность ξ стационарна, и найти ее спектральные характеристики.

Решение. Последовательность ξ центрирована, т. е. $m_{\xi}=0$, а ее ковариационная функция имеет вид

$$\begin{aligned} \mathbf{cov}\{\xi_{n+m},\xi_m\} &= \left(\sum_{k=1}^N z_k e^{i\lambda_k(n+m)}, \sum_{k=1}^N z_k e^{i\lambda_k m}\right) = \\ &= \sum_{k=1}^N \sum_{l=1}^N (z_k,z_l) e^{i\lambda_k(n+m)} \overline{e^{i\lambda_l m}} = \sum_{k=1}^N \sigma_k^2 e^{i\lambda_k n} = R_{\xi}(n), \end{aligned}$$

т. е. зависит только от n. Следовательно, последовательность ξ стационарна.

Введем функцию

$$F_{\xi}(\lambda) = \sum_{k: \lambda_k \leqslant \lambda} \sigma_k^2, \tag{3.15}$$

которая, очевидно, удовлетворяет условиям теоремы 3.1. Тогда ковариационная функция $R_{\xi}(n)$ представляется в виде интеграла Лебега—Стилтьеса:

$$R_{\xi}(n) = \int_{-\pi}^{\pi} e^{i\lambda n} dF_{\xi}(\lambda).$$

В силу (3.9) это означает, что введенная в (3.15) функция $F_{\xi}(\lambda)$ является спектральной функцией для ССП ξ . По построению $F_{\xi}(\lambda)$ кусочно постоянна на $[-\pi,\pi]$, причем $\lambda_1,\ldots,\lambda_N$ — точки ее разрывов, а $F_{\xi}(\lambda_k)-F_{\xi}(\lambda_k-)=\sigma_k^2$ — величины скачков. Таким образом, $F_{\xi}(\lambda)$ не является абсолютно непрерывной относительно меры Лебега, и, следовательно, спектральная плотность $f_{\xi}(\lambda)$ не существует. \blacksquare

 Π р и м е р 3.3. Пусть ε — последовательность некоррелированных случайных величин $\varepsilon_n,\ n\in\mathbb{Z}$, т. е. $\mathbf{M}\{\varepsilon_n\}=0,\ \mathbf{D}\{\varepsilon_n\}=D_\varepsilon>0$ и

$$(\varepsilon_i, \varepsilon_j) = \mathbf{cov}\{\varepsilon_i, \varepsilon_j\} = \left\{ egin{array}{ll} D_{arepsilon} & \mathrm{при} & i = j, \\ 0 & \mathrm{при} & i
eq j. \end{array}
ight.$$

Доказать ее стационарность, найти моментные и спектральные характеристики.

Решение. Последовательность $\varepsilon=\{\varepsilon_n,\,n\in\mathbb{Z}\}$ является стационарной, так как имеет ковариационную функцию

$$\mathbf{cov}\{\varepsilon_{n+k},\varepsilon_k\} = R_{\varepsilon}(n) = \begin{cases} D_{\varepsilon} & \text{при} & n = 0, \\ 0 & \text{при} & n \neq 0. \end{cases}$$

Воспользовавшись соотношением

$$\int_{-\pi}^{\pi} e^{i\lambda n} d\lambda = \begin{cases} 2\pi & \text{при} & n = 0, \\ 0 & \text{при} & n \neq 0, \end{cases}$$

получим спектральное представление для ковариационной функции $R_{\varepsilon}(n)$:

$$R_{\varepsilon}(n) = \int_{-\pi}^{\pi} e^{i\lambda n} f_{\varepsilon}(\lambda) d\lambda,$$

где $f_{\varepsilon}(\lambda) = \frac{D_{\varepsilon}}{2\pi}$ — спектральная плотность ССП $\varepsilon = \{\varepsilon_n, n \in \mathbb{Z}\}$. Тогда в соответствии с формулой (3.10) находим спектральную функцию $F_{\varepsilon}(\lambda) = \frac{D_{\varepsilon}}{2\pi}(\lambda + \pi)$.

Замечание. Последовательность $\varepsilon = \{\varepsilon_n, n \in \mathbb{Z}\}$, рассмотренную в примере 3.3, обычно называют *стационарным дискретным белым шумом*. При $D_{\varepsilon} = 1$ белый шум называют *стандартным*. Мы показали, что спектральная плотность $f_{\varepsilon}(\lambda)$ последовательности ε постоянна на отрезке $[-\pi,\pi]$, что и послужило основанием для термина «белый шум», используемого в радиофизике, где белым шумом называется случайный сигнал с равномерным спектром.

Последовательность белого шума позволяет сформировать различные виды стационарных последовательностей.

Определение 3.4. Пусть $\varepsilon=\{\varepsilon_n,\,n\in\mathbb{Z}\}$ — стандартный белый шум, а $\{a_k,\,k\in\mathbb{Z}\}$ — последовательность комплексных чисел, таких,

$$\sum_{k=-\infty}^{\infty} |a_k|^2 < \infty. \tag{3.16}$$

Случайная последовательность $\xi = \{\xi_n, n \in \mathbb{Z}\}$ вида

$$\xi_n = \sum_{k=-\infty}^{\infty} a_k \varepsilon_{n-k} \tag{3.17}$$

называется линейной $CC\Pi$ или последовательностью двустороннего скользящего среднего.

Если $a_k = 0$ при k < 0, т. е.

$$\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k},\tag{3.18}$$

то ξ называется последовательностью одностороннего скользящего среднего.

Наконец, если $a_k = 0$ при k < 0 и k > p, т. е.

$$\xi_n = \sum_{k=0}^p a_k \varepsilon_{n-k},\tag{3.19}$$

то ξ называется последовательностью скользящего среднего порядка p.

Пример 3.4. Показать, что последовательности скользящего среднего действительно удовлетворяют условиям стационарности.

Решение. Достаточно рассмотреть случай последовательности двустороннего скользящего среднего, так как остальные являются ее частными случаями. В силу условия (3.16) ряд (3.17) сходится в среднеквадратическом смысле (с.к.-сходимость ряда обсуждается в § 4). Очевидно, что

$$\xi_n = \sum_{k=-\infty}^{\infty} a_k \varepsilon_{n-k} = \sum_{k=-\infty}^{\infty} a_{n-k} \varepsilon_k.$$

Вычисляя ковариационную функцию с учетом свойства ортогональности сечений белого шума ε , находим

$$\begin{aligned} \mathbf{cov}\{\xi_{n+m},\xi_m\} &= \left(\sum_{k\in\mathbb{Z}} a_{n+m-k}\varepsilon_k, \sum_{k\in\mathbb{Z}} a_{m-k}\varepsilon_k\right) = \\ &= \sum_{k,l\in\mathbb{Z}} a_{n+m-k}\overline{a}_{m-l} \left(\varepsilon_k,\varepsilon_l\right) = \sum_{k\in\mathbb{Z}} a_{n+m-k}\overline{a}_{m-k} = \sum_{k\in\mathbb{Z}} a_{n+k}\overline{a}_k. \end{aligned}$$

Ряд $\sum_{k\in\mathbb{Z}}a_{n+k}\overline{a}_k$ сходится, поскольку $|a_{n+k}\overline{a}_k|\leqslant rac{|a_{n+k}|^2+|a_k|^2}{2}$. Таким

образом, показано, что $\xi = \{\xi_n, \ n \in \mathbb{Z}\}$ — стационарная последовательность с ковариационной функцией

$$R_{\xi}(n) = \sum_{k \in \mathbb{Z}} a_{n+k} \overline{a}_k.$$

Спектральная плотность $f_{\xi}(\lambda)$ ССП ξ имеет вид

$$\begin{split} f_{\xi}(\lambda) &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} e^{-i\lambda n} R_{\xi}(n) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} e^{-i\lambda n} \sum_{k \in \mathbb{Z}} a_{n+k} \overline{a}_k = \\ &= \frac{1}{2\pi} \sum_{k,n \in \mathbb{Z}} e^{-i\lambda (n+k)} a_{n+k} \, \overline{e^{-i\lambda k} a_k} = \\ &= \frac{1}{2\pi} \sum_{k,m \in \mathbb{Z}} e^{-i\lambda m} a_m \, \overline{e^{-i\lambda k} a_k} = \frac{1}{2\pi} \Big| \sum_{k \in \mathbb{Z}} e^{-i\lambda k} a_k \Big|^2, \end{split}$$

причем $f_{\xi}(\lambda)$ интегрируема на $[-\pi,\pi]$ в силу условия (3.16).

3.3. Спектральное представление ССП. Спектральное представление ковариационной функции определяет распределение «энергии» последовательности по частотам $\lambda \in [-\pi,\pi]$. В случае почти периодической последовательности (см. пример 3.2) мы видели, что

сумме гармоник со случайными амплитудами соответствует дискретное представление спектра в виде ступенчатой функции со скачками в точках, где сосредоточен спектр, т. е. в точках разрыва функции $F_{\xi}(\lambda)$. Таким образом, почти периодическую последовательность можно представить как сумму гармоник со случайными амплитудами, т. е. такая последовательность имеет дискретный «случайный спектр». Оказывается, что любая ССП допускает такое спектральное представление со «случайным спектром», хотя в общем случае спектр уже не будет дискретным. Это представление весьма удобно в приложениях и основано на понятии интеграла по ортогональной стохастической мере (см. п. 14.9).

Теорема 3.2. Пусть $\xi = \{\xi_n, n \in \mathbb{Z}\}$ — ССП с ковариационной функцией $R_{\xi}(n)$, соответствующей спектральной функции $F_{\xi}(\lambda)$. Тогда существует такая ортогональная стохастическая мера $Z_{\xi}(\Delta)$, определенная на борелевской σ -алгебре $\mathcal{B}([-\pi,\pi))$ промежутка $[-\pi,\pi)$, что имеет место представление

$$\xi_n = \int_{-\pi}^{\pi} e^{i\lambda n} Z_{\xi}(d\lambda), \quad n \in \mathbb{Z}, \tag{3.20}$$

причем $Z_{\xi}(\Delta)$ имеет структурную функцию вида

$$F_Z(\Delta) = \mathbf{M}\{|Z_{\xi}(\Delta)|^2\} = \int_{\Delta} dF_{\xi}(\lambda), \quad \Delta \in \mathcal{B}([-\pi, \pi)).$$
 (3.21)

Замечание. Таким образом, $F_{\xi}(\lambda)$ является функцией распределения структурной функции $F_Z(\Delta)$ ортогональной стохастической меры $Z_{\xi}(\Delta)$, определенной на $\mathcal{B}([-\pi,\pi))$. В частности, если $\Delta==(\alpha,\beta]\subset [-\pi,\pi)$, то $F_Z(\Delta)=F_{\xi}(\beta)-F_{\xi}(\alpha)$, а если к тому же $F_{\xi}(\lambda)$ имеет плотность $f_{\xi}(\lambda)$, то

$$F_Z(\Delta) = \int_{\Lambda} f_{\xi}(\lambda) d\lambda.$$

Спектральное представление ССП играет важную роль в задачах линейного оценивания и прогнозирования случайных последовательностей. Это связано с тем, что результат любого линейного преобразования ССП можно представить с помощью стохастического интеграла по мере $Z_{\mathcal{E}}(d\lambda)$.

Определение 3.5. Если случайная величина ζ является пределом в среднеквадратическом смысле некоторой последовательности случайных величин $\{\zeta^m\}$, образованных линейными комбинациями сечений ССП $\xi = \{\xi_n, n \in \mathbb{Z}\}$, то будем говорить, что $\zeta \in \mathcal{H}(\xi)$.

Теорема 3.3. Пусть случайная величина $\zeta \in \mathcal{H}(\xi)$, где $\xi - CC\Pi$, имеющая представление (3.20) и спектральную функцию $F_{\xi}(\lambda)$. Тогда существует такая функция $\Phi(\lambda)$, $\lambda \in [-\pi,\pi]$, что ζ допускает представление

$$\zeta = \int_{-\pi}^{\pi} \Phi(\lambda) Z_{\xi}(d\lambda), \qquad (3.22)$$

причем

$$\int_{-\pi}^{\pi} |\Phi(\lambda)|^2 dF_{\xi}(\lambda) < \infty. \tag{3.23}$$

Замечание. Поскольку условие $\zeta \in \mathcal{H}(\xi)$ означает, что ζ является линейной комбинацией сечений ССП ξ или с.к.-пределом таковых, мы далее будем говорить, что ζ является линейным преобразованием ξ . В свете этого утверждение теоремы 3.3 означает, что всякое линейное преобразование ССП ξ может быть представлено в виде интеграла по стохастической мере от некоторой функции $\Phi(\lambda)$, удовлетворяющей условию (3.23). Функция $\Phi(\lambda)$ характеризует само линейное преобразование и называется его частотной характеристикой. Условие (3.23) означает, что

$$\mathbf{M}\{|\zeta|^2\} = \int_{-\pi}^{\pi} |\Phi(\lambda)|^2 dF_{\xi}(\lambda) < \infty.$$

Теперь мы можем ввести понятие линейного стационарного преобразования ${\rm CC\Pi}.$

Определение 3.6. Пусть ССП $\xi = \{\xi_n, n \in \mathbb{Z}\}$ имеет спектральное представление (3.20). Если последовательность $\zeta = \{\zeta_n, n \in \mathbb{Z}\}$, допускает представление

$$\zeta_n = \int_{-\pi}^{\pi} e^{i\lambda n} \Phi(\lambda) Z_{\xi}(d\lambda), \quad n \in \mathbb{Z},$$
 (3.24)

с некоторой функцией $\Phi(\lambda)$, удовлетворяющей условию (3.23), то говорят, что последовательность ζ получена из ССП ξ с помощью стационарного линейного преобразования.

Пример 3.5. Показать, что последовательность $\zeta = \{\zeta_n, n \in \mathbb{Z}\}$, определенная в (3.24), является стационарной.

Решение. Вычислим ковариацию сечений ζ_m и $\zeta_n, m, n \in \mathbb{Z}$ пользуясь свойствами интеграла по ортогональной стохастической

мере (см. п. 14.9):

$$\mathbf{cov}\{\zeta_m,\zeta_n\} = (\zeta_m,\zeta_n) = \left(\int\limits_{-\pi}^{\pi} e^{i\lambda m} \Phi(\lambda) \, Z_{\xi}(d\lambda), \int\limits_{-\pi}^{\pi} e^{i\lambda n} \Phi(\lambda) \, Z_{\xi}(d\lambda)\right) =$$

$$= \int_{-\pi}^{\pi} e^{i\lambda m} \Phi(\lambda) \overline{e^{i\lambda n} \Phi(\lambda)} dF_{\xi}(\lambda) = \int_{-\pi}^{\pi} e^{i\lambda(m-n)} |\Phi(\lambda)|^{2} dF_{\xi}(\lambda) = R_{\zeta}(m-n),$$

что вместе с равенством
$$\mathbf{M}\{\zeta_n\} = \mathbf{M}\Big\{\int\limits_{-}^{\pi}e^{i\lambda n}\Phi(\lambda)\,Z_{\xi}(d\lambda)\Big\} = 0$$
 до-

казывает стационарность ζ . Итак, последовательность, полученная в результате стационарного линейного преобразования ССП, также является стационарной. При этом условие (3.23) означает, что $\mathbf{M}\{|\zeta_n|^2\}<\infty$, т. е. случайная последовательность ζ действительно существует.

Моментные и спектральные характеристики последовательностей ζ и ξ связаны некоторыми аналитическими соотношениями, о чем говорит следующее утверждение.

Tеорема 3.4. Последовательность ζ , полученная из $CC\Pi$ ξ c помощью линейного преобразования (3.24), является стационарной c ортогональной стохастической мерой $Z_{\zeta}(d\lambda)$, спектральной функцией $F_{\zeta}(\lambda)$ и ковариационной функцией $R_{\zeta}(n)$, которые удовлетворяют соотношениям

$$Z_{\zeta}(d\lambda) = \Phi(\lambda) Z_{\xi}(d\lambda),$$

$$F_{\zeta}(\lambda) = \int_{-\pi}^{\lambda} |\Phi(\lambda)|^2 dF_{\xi}(\lambda), \qquad R_{\zeta}(n) = \int_{-\pi}^{\pi} e^{i\lambda n} |\Phi(\lambda)|^2 dF_{\xi}(\lambda).$$

Если ξ имеет спектральную плотность $f_{\xi}(\lambda)$, то ζ также имеет спектральную плотность $f_{\zeta}(\lambda)$, причем

$$f_{\zeta}(\lambda) = |\Phi(\lambda)|^2 f_{\xi}(\lambda).$$

Соотношение (3.24) описывает линейное преобразование последовательности в спектральной области. Однако как показывает следующий пример, этому представлению может соответствовать и представление во временной области.

 Π р и м е р 3.6. Пусть стационарному линейному преобразованию с частотной характеристикой $\Phi(\lambda)$, удовлетворяющей условию

$$\int_{-\pi}^{\pi} |\Phi(\lambda)|^2 d\lambda < \infty, \tag{3.25}$$

подвергается стандартный дискретный белый шум $\varepsilon = \{\varepsilon_n, n \in \mathbb{Z}\}$. Показать, что полученная ССП $\xi = \{\xi_n, n \in \mathbb{Z}\}$ допускает представление в форме двустороннего скользящего среднего. Найти спектральную плотность $f_{\varepsilon}(\lambda)$.

Решение. Условие (3.25) равносильно условию (3.23), поскольку $F_{\varepsilon}(\lambda) = \frac{\lambda + \pi}{2\pi}$ (см. пример 3.3). В силу (3.25) функция $\Phi(\lambda)$ допускает разложение в ряд Фурье на отрезке $[-\pi,\pi]$:

$$\Phi(\lambda) = \sum_{m=-\infty}^{\infty} e^{-i\lambda m} h(m),$$

где

$$h(m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda m} \Phi(\lambda) d\lambda.$$

Если $Z_{\varepsilon}(d\lambda)$ — стохастическая мера в спектральном представлении белого шума ε , то соотношение (3.24) для ξ записывается как

$$\xi_n = \int_{-\pi}^{\pi} e^{i\lambda n} \Phi(\lambda) Z_{\varepsilon}(d\lambda) = \sum_{m=-\infty}^{\infty} h(m) \int_{-\pi}^{\pi} e^{i\lambda(n-m)} Z_{\varepsilon}(d\lambda) =$$

$$=\sum_{m=-\infty}^{\infty}h(m)\,\varepsilon_{n-m},$$

что соответствует представлению в форме скользящего среднего (3.17). Тогда в силу теоремы 3.4 спектральная плотность последовательности ξ имеет вид

$$f_{\xi}(\lambda) = \frac{1}{2\pi} |\Phi(\lambda)|^2,$$

так как $f_{\varepsilon}(\lambda)=1/2\pi$ — спектральная плотность стандартного белого шу ма ε .

3.4. Задачи для самостоятельного решения.

1. Показать, что если α_k , β_k — действительные некоррелированные случайные величины, $\mathbf{M}\{\alpha_k\} = \mathbf{M}\{\beta_k\} = 0$, $\mathbf{D}\{\alpha_k\} = \mathbf{D}\{\beta_k\} = \sigma_k^2$, $\sum_{k=1}^{\infty} \sigma_k^2 < \infty$, то последовательность

$$\xi_n = \sum_{k=1}^{\infty} (\alpha_k \cos \lambda_k n + \beta_k \sin \lambda_k n) \quad n \in \mathbb{Z},$$

является стационарной. Найти ковариационную функцию $R_{\xi}(n)$.

Указание. Показать, что СВ ξ_n допускает представление $\xi_n = \sum_{k=-\infty}^{\infty} z_k e^{i\lambda_k n}$, где $\lambda_{-k} = -\lambda_k$, $z_k = \frac{\alpha_k - i\beta_k}{2}$, $z_{-k} = \overline{z}_k$ при $k\geqslant 1$, $z_0 = 0$, причем $\{z_k,\, k\in\mathbb{Z}\}$ — некоррелированные.

Ответ.
$$R_{\xi}(n) = \sum_{k=1}^{\infty} \sigma_k^2 \cos \lambda_k n$$
.

2. Пусть CB θ имеет равномерное распределение на $[-\pi,\pi]$, а CB η распределена по закону $\mathcal{N}(0;1)$ и не зависит от θ . Показать, что последовательность

$$\xi_n = \begin{cases} \eta, & \text{если} \quad n = 0, \\ e^{i\theta n}, & \text{если} \quad n \neq 0, \end{cases}$$

является стационарной. Найти ее ковариационную функцию и спектральную плотность.

O т в е т.
$$m_\xi=0, \ R_\xi(n)=\left\{ egin{array}{ll} 1 & \mbox{пр }\mbox{\it u} & n=0, \\ 0 & \mbox{пр }\mbox{\it u} & n
eq 0, \end{array} \right. f_\xi(\lambda)=\frac{1}{2\pi}.$$

- 3. Пусть ζ ССП, полученная из ξ с помощью линейного преобразования с частотной характеристикой $\Phi_1(\lambda)$, а η ССП, полученная из ζ с помощью линейного преобразования с частотной характеристикой $\Phi_2(\lambda)$. Показать, что η может быть найдена из ξ с помощью линейного преобразования с частотной характеристикой $\Phi_2(\lambda)\Phi_1(\lambda)$.
- 4. Найти частотную характеристику преобразования ССП Y в последовательность

$$X(n) = \frac{1}{3}(Y(n) + Y(n-1) + Y(n-2)).$$

Ответ.
$$\Phi(\lambda) = \frac{1}{3} \left(1 + e^{-i\lambda} + e^{-2i\lambda} \right)$$
.

- **5.** Пусть $\xi_n = \cos(n\eta + \theta)$, где θ случайная величина, равномерно распределенная на $[0,2\pi]$, а η не зависит от θ и имеет некоторую функцию распределения G(x). Показать, что $\xi = \{\xi_n, n \in \mathbb{Z}\}$ вещественная центрированная ССП.
 - **6.** Пусть $0 < a < \pi$. Показать, что

$$R_{\xi}(n) = \left\{ egin{array}{ll} rac{a}{\pi} & \mbox{при} & n=0, \\ rac{\sin an}{\pi n} & \mbox{при} & n
eq 0 \end{array}
ight.$$

есть ковариационная функция некоторой ССП. Найти спектральную плотность этой последовательности.

Указание. Показать, что $R_{\xi}(n)=rac{1}{2\pi}\int\limits_{-a}^{a}e^{i\lambda n}\,d\lambda$, откуда следует, что

последовательность с ковариационной функцией $R_{\xi}(n)$ есть линейное стационарное преобразование белого шума с частотной характеристикой

$$\Phi(\lambda) = \left\{ \begin{array}{ll} 1 & \text{при} & |\lambda| \leqslant a, \\ 0 & \text{при} & |\lambda| > a. \end{array} \right.$$

Ответ.
$$f_\xi(\lambda)=\left\{egin{array}{ll} rac{1}{2\pi} & \mbox{при} & |\lambda|\leqslant a, \\ 0 & \mbox{при} & |\lambda|>a. \end{array}
ight.$$

7. Найти ковариационную функцию $R_{\xi}(n)$ ССП, имеющей спектральную плотность $f_{\xi}(\lambda) = \frac{\pi - |\lambda|}{\pi^2}$.

Указание. Воспользоваться формулой (3.11).
Ответ.
$$R_{\xi}(n) = \begin{cases} 1 & \text{при} \quad n=0, \\ \frac{2(-1)^n}{(\pi n)^2} & \text{при} \quad n \neq 0. \end{cases}$$

8. Пусть ξ, ζ — некоррелированные ССП (т. е. $\mathbf{cov}\{\xi_n,\zeta_m\}=0$ при всех $n,m\in\mathbb{Z}$) со спектральными функциями $F_\xi(\lambda),\ F_\zeta(\lambda)$. Показать, что $X_n=\xi_n+\zeta_n$ есть ССП, и найти ее спектральную функцию $F_X(\lambda)$.

Otbet.
$$F_X(\lambda) = F_{\xi}(\lambda) + F_{\zeta}(\lambda)$$
.

9. Пусть ξ , ζ — ССП, удовлетворяющие уравнениям

$$\xi_n - \alpha \, \xi_{n-1} = \varepsilon_n^1, \qquad \zeta_n - \alpha \, \zeta_{n-1} = \xi_n + \varepsilon_n^2,$$

где $|\alpha|<1$ — неслучайная постоянная, а $\varepsilon^1,\, \varepsilon^2$ — некоррелированные последовательности белого шума. Найти спектральную плотность ССП ζ .

У казание. Обозначим $Z^1(d\lambda)$, $Z^2(d\lambda)$ ортогональные стохастические меры в спектральных представлениях последовательностей ε^1 и ε^2 соответственно. Тогда ортогональная стохастическая мера, соответствующая последовательности ζ , равна

$$Z_{\zeta}(d\lambda) = \frac{Z^{1}(d\lambda)}{(1 - \alpha e^{-i\lambda})^{2}} + \frac{Z^{2}(d\lambda)}{1 - \alpha e^{-i\lambda}},$$

откуда с учетом некоррелированности последовательностей ε^1 , ε^2 находим ответ.

Ответ.
$$f_{\zeta}(\lambda) = \frac{1}{2\pi|1-\alpha e^{-i\lambda}|^4} + \frac{1}{2\pi|1-\alpha e^{-i\lambda}|^2}.$$

10. Используя спектральное представление, показать, что случайная последовательность $\xi = \{\xi_n, n \in \mathbb{Z}\}$, удовлетворяющая соотношению

$$\xi_n + b_1 \xi_{n-1} + \ldots + b_q \xi_{n-q} = a_0 \varepsilon_n + a_1 \varepsilon_{n-1} + \ldots + a_p \varepsilon_{n-p},$$

при определенных условиях на многочлен $Q(z) = 1 + b_1 z + \ldots + b_q z^q$ является линейным преобразованием стандартного белого шума $\varepsilon = \{\varepsilon_n, n \in \mathbb{Z}\}.$ Найти эти условия, определить спектральную плотность ССП ξ

У казание. Показать, что ξ имеет представление в виде одностороннего скользящего среднего (3.18), где a_k — коэффициенты разложения функции $\frac{P(z)}{Q(z)}$ в ряд Тейлора в единичном круге, а $P(z)=1+a_1z+\ldots+a_pz^p.$

Ответ. Если корни многочлена Q(z) лежат вне единичного круга, то $f_\xi(\lambda)=rac{1}{2\pi}\left|rac{P(e^{-i\lambda})}{Q(e^{-i\lambda})}
ight|^2.$

§ 4. Линейные преобразования случайных последовательностей

4.1. Линейные преобразования последовательностей общего вида.

Определение 4.1. Случайная последовательность $\{\eta_n, n \in \mathbb{Z}\}$ называется линейным преобразованием случайной последовательности $\{\xi_k, k \in \mathbb{Z}\}$ с весовой последовательностью $\{c_{nk}, n, k \in \mathbb{Z}\}$, если при каждом $n \in \mathbb{Z}$

$$\eta_n = \sum_{k=-\infty}^{\infty} c_{nk} \xi_k. \tag{4.1}$$

Здесь и далее сходимость ряда (4.1) понимается в среднеквадратическом смысле:

$$\eta_n = \lim_{N,M \to \infty} \sum_{k=-N}^{M} c_{nk} \xi_k.$$
(4.2)

Соотношение (4.2) можно записать следующим образом:

$$\mathbf{M}\left\{\left|\eta_{n} - \sum_{k=-N}^{M} c_{nk} \xi_{k}\right|^{2}\right\} \to 0 \quad \text{при} \quad N, M \to \infty.$$
 (4.3)

Очевидно, что преобразование $\{\eta_n\}$ существует, если выполнены соотношения (4.2) или (4.3), поэтому на $\{c_{nk}\}$ и $\{\xi_k\}$ должны быть наложены некоторые условия, гарантирующие, что выражение (4.1) имеет смысл.

О пределение 4.2. Случайная последовательность $\{\xi_k\}$ называется гильбертовой, если $\mathbf{M}\{|\xi_k|^2\}<\infty$ для всех $k\in\mathbb{Z}$.

Для гильбертовых последовательностей при $k, l \in \mathbb{Z}$ существуют

$$m_{\xi}(k) = \mathbf{M}\{\xi_k\},$$

$$R_{\xi}(k,l) = \mathbf{cov}\{\xi_k,\xi_l\} = \mathbf{M}\left\{(\xi_k - m_{\xi}(k))\overline{(\xi_l - m_{\xi}(l))}\right\},$$

$$D_{\mathcal{E}}(k) = \sigma_{\mathcal{E}}^2(k) = R_{\mathcal{E}}(k, k) = \mathbf{M} \{ |\xi_k - m_{\mathcal{E}}(k)|^2 \}.$$

 Π р и м е р $\ 4.1.$ Доказать, что $\{\eta_n\}$ существует тогда и только тогда, когда сходятся следующие числовые ряды:

$$I_1(n) = \sum_{k=-\infty}^{\infty} c_{nk} m_{\xi}(k) \quad \text{if} \quad I_2(n) = \sum_{k,l=-\infty}^{\infty} c_{nk} \overline{c_{nl}} R_{\xi}(k,l).$$
 (4.4)

5 Б.М. Миллер и А.Р. Панков

Решение. Очевидно, что достаточно рассмотреть условия сходимости ряда $\zeta_n = \sum_{k=0}^\infty c_{nk} \xi_k$. Покажем, что при выполнении (4.4) последовательность случайных величин $S_n^K = \sum_{k=0}^K c_{nk} \xi_k$ является фундаментальной в среднеквадратическом смысле, т. е. $\mathbf{M} \left\{ |S_n^K - S_n^L|^2 \right\} \to 0$ при $K, L \to \infty$. Действительно, при L > K

$$\mathbf{M}\left\{|S_{n}^{K} - S_{n}^{L}|^{2}\right\} = \mathbf{M}\left\{\left|\sum_{k=K+1}^{L} c_{nk}\xi_{k}\right|^{2}\right\} = \sum_{k,l=K+1}^{L} c_{nk}\overline{c_{nl}}\,\mathbf{M}\left\{\xi_{k}\overline{\xi}_{l}\right\} =$$

$$= \sum_{k,l=K+1}^{L} c_{nk}\overline{c_{nl}}\,(m_{\xi}(k)\overline{m_{\xi}(l)} + R_{\xi}(k,l)) = \sum_{k,l=K+1}^{L} c_{nk}\overline{c_{nl}}\,m_{\xi}(k)\overline{m_{\xi}(l)} +$$

$$+ \sum_{k,l=K+1}^{L} c_{nk}\overline{c_{nl}}\,R_{\xi}(k,l) = \left|\sum_{k=K+1}^{L} c_{nk}\,m_{\xi}(k)\right|^{2} + \sum_{k,l=K+1}^{L} c_{nk}\overline{c_{nl}}\,R_{\xi}(k,l) = I_{K,L}.$$

Если выполнено (4.4), то $I_{K,L} \to 0$ при $K,L \to \infty$, что означает: $\mathbf{M}\left\{|S_n^K - S_n^L|^2\right\} \to 0$ при $K,L \to \infty$. В силу свойств с.к.-сходимости (см. п. 14.4) последовательность $\left\{S_n^K\right\}$ сходится в среднеквадратическом смысле к пределу $\zeta_n = \lim_{K \to \infty} \sum_{k=0}^K c_{nk} \xi_k = \sum_{k=0}^\infty c_{nk} \xi_k$.

Наоборот, если ζ_n существует, то

$$\mathbf{M}\big\{|\zeta_n|^2\big\} = \mathbf{D}\{\zeta_n\} + |\mathbf{M}\{\zeta_n\}|^2 < \infty,$$

но

$$\mathbf{D}\{\zeta_n\} = \lim_{L \to \infty} \sum_{k,l=0}^{L} c_{nk} \overline{c_{nl}} R_{\xi}(k,l) = \sum_{k,l=0}^{\infty} c_{nk} \overline{c_{nl}} R_{\xi}(k,l) < \infty,$$

$$|\mathbf{M}\{\zeta_n\}|^2 = \lim_{L \to \infty} \left| \sum_{k=0}^{L} c_{nk} m_{\xi}(k) \right|^2 = \left| \sum_{k=0}^{\infty} c_{nk} m_{\xi}(k) \right|^2 < \infty,$$

что означает сходимость рядов (4.4). Таким образом, если ряды (4.4) сходятся, то $\mathbf{M}\{|\eta_n|^2\}<\infty$ и, более того, мы получили соотношения для математического ожидания и дисперсии СП η_n :

$$\mathbf{M}\{\eta_n\} = I_1(n), \quad \mathbf{D}\{\eta_n\} = I_2(n),$$

где $I_1(n), I_2(n)$ определены в (4.4).

Используя некоторую дополнительную информацию о СП $\{\xi_n\}$, можно несколько упростить условия (4.4).

Пример 4.2. Пусть известно, что $\mathbf{M}\{|\xi_n|^2\} \leqslant K^2$ для всех $n \in \mathbb{Z}$. Доказать, что в этом случае для существования линейного преобразования η_n (4.1) достаточно, чтобы $\sum_{k=-\infty}^{\infty} |c_{nk}| < \infty$ для всех $n \in \mathbb{Z}$.

Решение. Так как $\mathbf{M}\{|\xi_k|^2\}=\sigma_\xi^2(k)+|m_\xi(k)|^2\leqslant K^2,\ k\in\mathbb{Z},$ то $\sigma_\xi(k)\leqslant K$ и $|m_\xi(k)|\leqslant K$. Известно, что $|R_\xi(k,l)|\leqslant\sigma_\xi(k)\sigma_\xi(l),$ тогда

$$\begin{split} \sum_{k,l=-\infty}^{\infty} |c_{nk}c_{nl}R_{\xi}(k,l)| &\leqslant \sum_{k,l=-\infty}^{\infty} |c_{nk}||c_{nl}|\sigma_{\xi}(k)\sigma_{\xi}(l) = \\ &= \Big(\sum_{k=-\infty}^{\infty} |c_{nk}|\sigma_{\xi}(k)\Big)^2 \leqslant K^2 \Big(\sum_{k=-\infty}^{\infty} |c_{nk}|\Big)^2 < \infty. \end{split}$$

Таким образом, ряд $I_2(n)$ в (4.4) сходится абсолютно и, следовательно, сходится. Аналогично,

$$\sum_{k=-\infty}^{\infty} |c_{nk} m_{\xi}(k)| \leqslant K \sum_{k=-\infty}^{\infty} |c_{nk}| < \infty,$$

поэтому сходится ряд $I_1(n)$. Итак, существование η_n теперь следует из результатов примера 4.1. \blacksquare

Рассмотрим примеры важных для практических приложений линейных преобразований.

Пример 4.3. Вещественная СП $\{\xi_k, k \geqslant 0\}$ определена соотношением $\xi_k = \theta + \varepsilon_k$, где θ — случайный параметр с $\mathbf{M}\{\theta\} = m_\theta$ и $\mathbf{D}\{\theta\} = D_\theta$, $\{\varepsilon_k\}$ — центрированный дискретный белый шум, такой, что $\mathbf{D}\{\varepsilon_k\} = D_k \leqslant D$, причем параметр θ не коррелирует с $\{\varepsilon_k\}$. СП $\{\xi_k\}$ подвергается преобразованию осреднения:

$$\eta_n = \frac{1}{n+1} \sum_{k=0}^n \xi_k, \quad n \geqslant 0.$$
(4.5)

Вычислить $\mathbf{M}\{\eta_n\}$, $\mathbf{D}\{\eta_n\}$ и найти $\lim_{n\to\infty}\mathbf{D}\{\eta_n\}$.

Решение. $\mathbf{M}\{\xi_k\}=m_{\theta}$ и $\mathbf{D}\{\xi_k\}=D_{\theta}+D_k\leqslant D_{\theta}+D$. Поэтому $\mathbf{M}\{\xi_k^2\}\leqslant D_{\theta}+D+m_{\theta}^2=K<\infty$. Так как сумма в (4.5) содержит конечное число слагаемых, условия примера 4.2 выполнены. Таким образом, $\mathbf{M}\{\eta_n^2\}<\infty$ при каждом $n\geqslant 0$, причем $\mathbf{M}\{\eta_n\}=I_1(n)$

и $\mathbf{D}\{\eta_n\} = I_2(n)$, где

$$I_1(n) = \frac{1}{n+1} \sum_{k=0}^n m_\theta = m_\theta;$$
 $R_\xi(k,l) = \begin{cases} D_\theta + D_k & \text{при} & k = l, \\ D_\theta & \text{при} & k \neq l; \end{cases}$

$$I_2(n) = \frac{1}{(n+1)^2} \sum_{k,l=0}^n R_{\xi}(k,l) =$$

$$= \frac{1}{(n+1)^2} \left[(n+1)^2 D_{\theta} + \sum_{k=0}^n D_k \right] = D_{\theta} + \frac{1}{(n+1)^2} \sum_{k=0}^n D_k.$$

Заметим, что в силу $D_k \leqslant D$ имеем

$$D_{\theta} \leqslant I_2(n) \leqslant D_{\theta} + \frac{1}{(n+1)^2} \sum_{k=0}^n D = D_{\theta} + \frac{D}{n+1} \to D_{\theta}$$
 при $n \to \infty$.

Таким образом, $\mathbf{D}\{\eta_n\} \to D_\theta$ при $n \to \infty$.

Для того чтобы прояснить прикладной смысл полученного результата, рассмотрим процедуру линейного оценивания случайного вектора η по вектору наблюдений ξ .

О пределение 4.3. Оценка $\hat{\eta} = \varphi(\xi)$ называется линейной среднеквадратической оценкой для η по ξ , если φ — линейное преобразование. Точность оценки характеризуется среднеквадратической погрешностью $\Delta = \mathbf{M}\{|\eta - \hat{\eta}|^2\}$.

Пример 4.4. Доказать, что η_n , определенная в (4.5), является несмещенной линейной оценкой для θ , погрешность которой можно сделать сколь угодно малой.

Решение. Преобразуем формулу (4.5):

$$\eta_n = \frac{1}{n+1} \sum_{k=0}^{n} \xi_k = \frac{1}{n+1} \sum_{k=0}^{n} (\theta + \varepsilon_k) = \theta + \frac{1}{n+1} \sum_{k=0}^{n} \varepsilon_k.$$

Таким образом, $\delta_n = \eta_n - \theta = \frac{1}{n+1} \sum_{k=0}^n \varepsilon_k$ представляет собой случайную ошибку оценки η_n .

Тогда
$$\mathbf{M}\{\delta_n\}=\mathbf{M}\Big\{\frac{1}{n+1}\sum_{k=0}^n \varepsilon_k\Big\}=0$$
, так как $\mathbf{M}\{\varepsilon_k\}=0$, и

$$\Delta_n = \mathbf{M} \left\{ \delta_n^2 \right\} = \mathbf{D} \left\{ \frac{1}{n+1} \sum_{k=0}^n \varepsilon_k \right\} \leqslant \frac{D}{n+1} \to 0$$
 при $n \to \infty$,

что следует из результата примера 4.3. Итак, $\mathbf{M}\{\eta_n - \theta\} = 0$ для всякого $n \geqslant 0$ (несмещенность), а $\Delta_n = \mathbf{M}\{|\eta_n - \theta|^2\} \to 0$ при $n \to \infty$ (состоятельность).

Замечание. Если в примере 4.4 параметр θ является неслучайным (т. е. $D_{\theta}=0$), то результат, сформулированный выше, принимает следующий вид:

$$\frac{1}{n+1} \sum_{k=0}^{n} \xi_k \xrightarrow{\text{с.к.}} m_{\xi} \quad \text{при} \quad n \to \infty, \tag{4.6}$$

где $m_{\xi} = \mathbf{M}\{\xi_k\} = \theta$. При этом утверждение (4.6) называют *законом* больших чисел.

Рассмотрим вещественную СП $\{\xi_n\}$, являющуюся процессом наблюдения, формируемым по следующей схеме:

$$\xi_k = \varphi(k) + \varepsilon_k, \quad k \in \mathbb{Z},$$
 (4.7)

где $\varphi(k)$ — полезный нестационарный случайный сигнал, а $\{\varepsilon_k\}$ — центрированный белый шум с постоянной дисперсией $\mathbf{D}\{\varepsilon_k\} = D_{\varepsilon} > 0$.

Для оценивания сигнала $\varphi(k)$ СП $\{\xi_k\}$ подвергается преобразованию, которое называется фильтром экспоненциального сглаживания и имеет вид

$$\eta_n = \alpha \,\eta_{n-1} + (1 - \alpha) \,\xi_n, \quad n \in \mathbb{Z},\tag{4.8}$$

где $\alpha \in [0,1)$ — параметр фильтра.

В следующем примере исследуются характеристики точности фильтра экспоненциального сглаживания (4.8).

Пример 4.5. Предположим, что в модели (4.7) полезный сигнал имеет вид $\varphi(k)=\theta_1+\theta_2k$, где $\theta_1,\;\theta_2$ — случайные параметры с известными средними $m_{\theta_1},\;m_{\theta_2}$ и дисперсиями $D_{\theta_1},\;D_{\theta_2},\;$ причем $\{\theta_1,\;\theta_2\}$ не зависят от $\{\varepsilon_k\}$. Найти с.к.-погрешность оценки η_n сигнала $\varphi(k)$, определяемой уравнением (4.8).

Решение. 1) Покажем, что (4.8) является линейным преобразованием вида (4.1):

$$\eta_n = \alpha (\alpha \eta_{n-2} + (1 - \alpha) \xi_{n-1}) + (1 - \alpha) \xi_n =$$

$$= (1 - \alpha)(\xi_n + \alpha \xi_{n-1}) + \alpha^2 \eta_{n-2} = \dots = (1 - \alpha) \sum_{k=0}^{\infty} \alpha^k \xi_{n-k},$$

причем полученный ряд с.к.-сходится в силу $|\alpha| < 1$.

2) Рассмотрим действие полученного линейного преобразования на СП $\{\xi_n\}$ вида (4.7):

$$\eta_n = (1 - \alpha) \sum_{k=0}^{\infty} \alpha^k (\theta_1 + \theta_2(n-k)) + (1 - \alpha) \sum_{k=0}^{\infty} \alpha^k \varepsilon_{n-k} = \eta_n^{(1)} + \eta_n^{(2)},$$

$$\eta_n^{(1)} = (1 - \alpha)(\theta_1 + \theta_2 n) \sum_{k=0}^{\infty} \alpha^k - (1 - \alpha)\theta_2 \sum_{k=0}^{\infty} \alpha^k k.$$

Учитывая, что $\sum_{k=0}^{\infty} \alpha^k = (1-\alpha)^{-1}$ и $(1-\alpha) \sum_{k=0}^{\infty} k \alpha^k = \alpha (1-\alpha)^{-1}$, получаем $\eta_n^{(1)} = \varphi(n) + \frac{\alpha}{\alpha-1} \theta_2$. Отсюда в силу независимости θ_2 от $\{\varepsilon_n\}$ находим

$$\Delta_{n} = \mathbf{M}\{|\eta_{n} - \varphi(n)|^{2}\} = \mathbf{M}\left\{\left|\frac{\alpha}{\alpha - 1}\theta_{2}\right|^{2}\right\} + \mathbf{D}\left\{(1 - \alpha)\sum_{k=0}^{\infty} \alpha^{k} \varepsilon_{n-k}\right\},$$

$$\mathbf{M}\left\{\left|\frac{\alpha}{\alpha - 1}\theta_{2}\right|^{2}\right\} = \frac{\alpha^{2}}{(\alpha - 1)^{2}}(m_{\theta_{2}}^{2} + D_{\theta_{2}}),$$

$$\mathbf{D}\left\{\sum_{k=0}^{\infty} \alpha^{k} \varepsilon_{n-k}\right\} = D_{\varepsilon} \sum_{k=0}^{\infty} (\alpha^{2})^{k} = \frac{D_{\varepsilon}}{1 - \alpha^{2}}.$$

Окончательно получаем

$$\Delta_n = \frac{\alpha^2}{(\alpha - 1)^2} (m_{\theta_2}^2 + D_{\theta_2}) + \frac{1 - \alpha}{1 + \alpha} D_{\varepsilon} = \Delta_n^{(1)} + \Delta_n^{(2)} = f(\alpha).$$

Заметим, что $\Delta_n^{(1)}$ — результат искажения фильтром полезного сигнала $\varphi(n)$, а $\Delta_n^{(2)}$ — остаток от шума наблюдения $\{\varepsilon_k\}$. Интересно, что при $\alpha \to 0$ $\Delta_n^{(1)} \to 0$, но тогда $\Delta_n^{(2)} \to D_\varepsilon$, а при $\alpha \to 1$ $\Delta_n^{(2)} \to 0$, но $\Delta_n^{(1)} \to \infty$. Очевидно, что параметр α может быть выбран оптимальным образом из условия $\widehat{\alpha} = \arg\min_{\alpha \in [0,1)} f(\alpha)$.

4.2. Линейные преобразования стационарных СП. Пусть известно, что $\{\xi_k, k \in \mathbb{Z}\}$ — стационарная вещественная СП с характеристиками: $\mathbf{M}\{\xi_k\} = m_\xi$, $\mathbf{cov}\{\xi_k, \xi_l\} = R_\xi(k-l)$, $\mathbf{D}\{\xi_k\} = R_\xi(0) > 0$. Пусть также задана некоторая числовая последовательность $\{c_m\}$.

О пределение 4.4. Случайная последовательность $\{\eta_n\}$ называется стационарным линейным преобразованием случайной последовательности $\{\xi_k\}$ с весовой последовательностью $\{c_m\}$, если

$$\eta_n = \sum_{m = -\infty}^{\infty} c_m \xi_{n-m}, \quad n \in \mathbb{Z}.$$
(4.9)

Замечание. Ранее в п. 3.3 изучались линейные преобразования в спектральной (частотной) форме. Соотношение (4.9) дает явное представление преобразования во временной области. Частный случай такого преобразования рассмотрен в примере 3.6.

Для существования преобразования (4.9) достаточно, чтобы выполнялось условие

$$\sum_{m=-\infty}^{\infty} |c_m| < \infty, \tag{4.10}$$

что следует из результата примера 4.2.

Пример 4.6. Пусть выполнено (4.10). Доказать, что СП $\{\eta_n\}$, определяемая в (4.9), является стационарной.

Решение. Покажем, что $\mathbf{M}\{\eta_n\} \equiv m_\eta$ и $\mathbf{cov}\{\eta_n,\eta_m\} \equiv R_\eta(n-m)$ при любых целых m, n:

$$\mathbf{M}\{\eta_n\} = \mathbf{M}\left\{\sum_{m=-\infty}^{\infty} c_m \xi_{n-m}\right\} =$$

$$= \sum_{m=-\infty}^{\infty} c_m \mathbf{M}\{\xi_{n-m}\} = m_{\xi} \sum_{m=-\infty}^{\infty} c_m \equiv m_{\eta}.$$

Далее,

$$\begin{aligned} & \mathbf{cov}\{\eta_n,\eta_m\} = \mathbf{cov}\Big\{\sum_{p=-\infty}^{\infty} c_p \xi_{n-p} \,, \sum_{s=-\infty}^{\infty} c_s \xi_{m-s}\Big\} = \\ & = \sum_{p,s=-\infty}^{\infty} c_p c_s \, \mathbf{cov}\{\xi_{n-p},\xi_{m-s}\} = \sum_{p,s=-\infty}^{\infty} c_p c_s \, R_{\xi}(n-m+s-p) \equiv \\ & \equiv R_n(n-m). \end{aligned}$$

Таким образом, СП $\{\eta_n\}$ стационарна по определению. Заметим, что $\mathbf{D}\{\eta\}=R_\eta(0)=\sum_{p,s=-\infty}^\infty c_p c_s R_\xi(s-p)$. Обоснованность внесения оператора математического ожидания и ковариации под знак суммирования следует из примеров $4.1,\ 4.2$ и условия (4.10).

Замечание. Если весовая последовательность $\{c_m\}$ такова, что $c_m=0$ при всех m<0, то стационарное линейное преобразование (4.9), имеющее вид $\eta_n=\sum_{m=0}^{\infty}c_m\xi_{n-m}$, называется физически реа-

лизуемым (фильтром), поскольку в этом случае выходной сигнал η_n зависит лишь от прошлых значений входного сигнала ξ_k при $k\leqslant n$.

Пример 4.7. Пусть при некотором $|\alpha| < 1$ последовательность $\{\eta_n\}$ удовлетворяет рекуррентному уравнению:

$$\eta_n = \alpha \eta_{n-1} + \xi_n, \quad n \in \mathbb{Z}, \tag{4.11}$$

где $\{\xi_n\}$ — вещественная ССП. Показать, что (4.11) является линейным стационарным фильтром, и найти моментные характеристики СП $\{\eta_n\}$.

Решение. Непосредственно из результатов примера 4.5 следует

$$\eta_n = \sum_{k=0}^{\infty} \alpha^k \xi_{n-k}, \quad n \in \mathbb{Z}, \tag{4.12}$$

где $c_k=\alpha^k$. Тогда $\sum_{k=0}^\infty |c_k|=\sum_{k=0}^\infty |\alpha|^k=\frac{1}{1-|\alpha|}<\infty,$ т. е. условие (4.10) выполнено.

Опираясь на результаты примера 4.6, находим, что выражения

$$m_{\eta} = m_{\xi} \sum_{k=0}^{\infty} \alpha^k = \frac{m_{\xi}}{1 - \alpha}, \tag{4.13}$$

$$R_{\eta}(n-m) = \sum_{p,s=0}^{\infty} \alpha^{p+s} R_{\xi}(n-m+s-p), \qquad (4.14)$$

$$D_{\eta} = R_{\eta}(0) = \sum_{p,s=0}^{\infty} \alpha^{p+s} R_{\xi}(s-p)$$
 (4.15)

определяют математическое ожидание, ковариационную функцию и дисперсию СП $\{\eta_n\}$.

Особый интерес представляет случай, когда фильтруемая СП $\{\xi_n\}$ является белым шумом. При этом соотношения (4.14), (4.15) можно существенно упростить.

 Π р и м е р 4.8. В условиях примера 4.7 рассмотреть случай, когда $\{\xi_n\}$ — стационарный белый шум.

Решение. По определению белого шума $R_{\xi}(s-p)=0,$ если $p\neq s,$ поэтому из (4.15) следует

$$D_{\eta} = \sum_{p=0}^{\infty} \alpha^{2p} D_{\xi} = \frac{D_{\xi}}{1 - \alpha^2}.$$

Пусть теперь $m \leqslant n$ и l = n - m, тогда

$$R_{\eta}(n-m) = R_{\eta}(l) = \sum_{p-s=l}^{\infty} \alpha^{2s+l} D_{\xi} = \alpha^{l} D_{\xi} \sum_{s=0}^{\infty} \alpha^{2s} = \alpha^{l} D_{\eta}.$$

Аналогично, если m>n, то $R_{\eta}(l)=R_{\eta}(-l)=\alpha^{-l}D_{\eta}.$ Объединяя оба решения, находим $R_{\eta}(n-m)=\alpha^{|n-m|}D_{\eta}.$

Определение 4.5. Комплексная функция $\Phi(\lambda)$ действительной переменной $\lambda \in [-\pi, \pi]$, определяемая соотношением

$$\Phi(\lambda) = \sum_{m=-\infty}^{\infty} c_m e^{-i\lambda m}, \tag{4.16}$$

называется частотной характеристикой линейного стационарного преобразования (4.9).

Замечание. Нетрудно проверить, что $\Phi(\lambda)$, определяемая выражением (4.16), совпадает с частотной характеристикой, использованной в (3.24) для спектрального представления линейного стационарного преобразования (см. также пример 3.6).

Пример 4.9. Доказать, что $\Phi(\lambda)$, $\lambda \in [-\pi, \pi]$, существует, если выполнено условие (4.10).

Решение. Покажем, что при каждом $\lambda \in [-\pi, \pi]$ ряд (4.16) сходится абсолютно.

$$|\Phi(\lambda)| = \left| \sum_{m=-\infty}^{\infty} c_m e^{-i\lambda m} \right| \leqslant \sum_{m=-\infty}^{\infty} |c_m| |e^{-i\lambda m}| = \sum_{m=-\infty}^{\infty} |c_m| < \infty,$$

так как $|e^{-i\lambda m}|^2 = \cos^2 \lambda m + \sin^2 \lambda m = 1$.

Зачастую преобразование (4.9) задается неявно (см. пример 4.7), поэтому для вычисления $\Phi(\lambda)$ удобно воспользоваться следующей формулой, вытекающей непосредственно из (4.16):

$$\Phi(\lambda) = \frac{L(e^{i\lambda m})}{e^{i\lambda m}},\tag{4.17}$$

где $L(e^{i\lambda m})$ — результат линейного стационарного преобразования неслу чайной последовательности $x_m = e^{i\lambda m}, m \in \mathbb{Z}$

Частотная характеристика $\Phi(\lambda)$ позволяет вычислить спектраль-

ную плотность преобразования СП $\{\xi_m\}$ (см. теорему 3.4). Пример 4.10. Пусть стационарная СП $\{\xi_m\}$ имеет спектральную плотность $f_{\xi}(\lambda)$, $\lambda \in [-\pi, \pi]$. Доказать, что СП $\{\eta_n\}$ вида (4.9) при условии (4.10) также имеет спектральную плотность $f_n(\lambda)$:

$$f_{\eta}(\lambda) = |\Phi(\lambda)|^2 f_{\xi}(\lambda). \tag{4.18}$$

Решение. Рассмотрим случай, когда $\sum_{n} |R_{\eta}(n)| < \infty$. Тогда в си-

лу представления (3.12) $f_{\eta}(\lambda)=rac{1}{2\pi}\sum_{n\in\mathbb{Z}}R_{\eta}(n)e^{-i\lambda n},$ причем ковариационная функция $R_{\eta}(n)$ имеет вид (см. пример 4.6)

$$R_{\eta}(n) = \sum_{\substack{n \ s \in \mathbb{Z}}} c_p c_s R_{\xi}(n+s-p).$$

Тогда спектральная плотность $f_{\eta}(\lambda)$ может быть представлена в виде

$$\begin{split} f_{\eta}(\lambda) &= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \sum_{p,s \in \mathbb{Z}} c_p c_s \, R_{\xi}(n+s-p) e^{-i\lambda n} = \\ &= \sum_{p,s \in \mathbb{Z}} c_p c_s \, e^{i\lambda s} e^{-i\lambda p} \, \frac{1}{2\pi} \sum_{l \in \mathbb{Z}} R_{\xi}(l) e^{-i\lambda l} = \\ &= \Phi(\lambda) \overline{\Phi(\lambda)} f_{\xi}(\lambda) = |\Phi(\lambda)|^2 f_{\xi}(\lambda). \quad \blacksquare \end{split}$$

Проиллюстрируем применение формулы (4.18) для модели преобразования, рассмотренной в примере 4.7.

Пример 4.11. Пусть линейное преобразование задано рекуррентной формулой (4.11), где $\{\xi_n\}$ — центрированная СП с ковариационной функцией $R_\xi(n)=D_\xi\beta^{|n|}, |\beta|<1$. Найти спектральную плотность СП $\{\eta_n\}$.

Решение. По формуле (3.12) имеем

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} R_{\xi}(n) e^{-i\lambda n} = \frac{D_{\xi}}{2\pi} \sum_{n=-\infty}^{\infty} e^{-i\lambda n} \beta^{|n|} =$$

$$= \frac{D_{\xi}}{2\pi} \cdot \frac{1-\beta^{2}}{|1-\beta e^{-i\lambda}|^{2}} = \frac{D_{\xi}(1-\beta^{2})}{2\pi(1+\beta^{2}-2\beta\cos\lambda)}. \quad (4.19)$$

Найдем теперь частотную характеристику преобразования

$$\eta_n = \alpha \eta_{n-1} + \xi_n. \tag{4.20}$$

Для этого рассмотрим соотношение (4.17) для случая, когда $L(\cdot)$ задается уравнением (4.20). Тогда

$$\Phi(\lambda)e^{i\lambda n} = \alpha(\Phi(\lambda)e^{i\lambda(n-1)}) + e^{i\lambda n}, \tag{4.21}$$

откуда, сокращая на $e^{i\lambda n}$ обе части (4.21) и выражая явно $\Phi(\lambda)$, получаем

$$\Phi(\lambda) = \frac{1}{1 - \alpha e^{-i\lambda}} \quad \text{if} \quad |\Phi(\lambda)|^2 = \frac{1}{1 + \alpha^2 - 2\alpha \cos \lambda}.$$

Теперь, используя формулы (4.18) и (4.19), находим

$$f_{\eta}(\lambda) = \frac{D_{\xi}(1-\beta^2)}{2\pi(1+\alpha^2 - 2\alpha\cos\lambda)(1+\beta^2 - 2\beta\cos\lambda)}. \quad \blacksquare$$

4.3. Линейное прогнозирование стационарных последовательностей. Пусть $\xi=\{\xi_n,\ n\in\mathbb{Z}\}$ — центрированная ССП с ковариационной функцией $R_\xi(n)$ и спектральной функцией $F_\xi(\lambda)$.

Определение 4.6. Пространством $\mathcal{H}(\xi)$, порожденным случайной последовательностью ξ , называется совокупность всех случайных величин, являющихся конечными линейными комбинациями сечений СП ξ или с.к.-пределами таковых.

Элементами пространства $\mathcal{H}(\xi)$ являются линейные преобразования СП ξ (см. п. 3.3).

Для любых $\nu, \eta \in \mathcal{H}(\xi)$ можно определить *скалярное произведение* и *норму*:

$$(\nu, \eta) = \mathbf{M} \{ \nu \overline{\eta} \} ,$$

$$\|\nu\| = (\mathbf{M}\{|\nu|^2\})^{1/2} = (\nu, \nu)^{1/2}.$$

В этом случае пространство $\mathcal{H}(\xi)$ — гильбертово и является подпространством гильбертова пространства \mathcal{H} случайных величин с конечным вторым моментом (см. п. 14.7). Будем также говорить, что $\mathcal{H}(\xi)$ порожедено ССП ξ .

Предположим, что до момента m включительно ССП ξ доступна наблюдению, т. е. $\xi^m = \{\xi_m, \xi_{m-1}, \dots\} -$ наблюдаемый случайный элеменm (наблюдаемая часть ССП ξ). По аналогии с $\mathcal{H}(\xi)$ введем гильбертово пространство $\mathcal{H}(\xi^m)$, порожденное только наблюдаемой частью ССП ξ . Очевидно, что $\mathcal{H}(\xi^m) \subseteq \mathcal{H}(\xi)$.

Определение 4.7. Наилучшим линейным среднеквадратическим прогнозом (с.к.-оптимальным прогнозом) для ξ_{m+n} , $n \geqslant 1$, по наблюдениям ξ^m называется случайная величина $\eta \in \mathcal{H}(\xi^m)$, такая, что

$$\|\xi_{m+n} - \eta\|^2 \le \|\xi_{m+n} - \gamma\|^2 \quad \forall \gamma \in \mathcal{H}(\xi^m).$$

Далее наилучший линейный прогноз η будем обозначать $\widehat{\xi}_{n+m}$. Точность прогноза характеризуется величиной среднеквадратической погрешности (с.к.-погрешности):

$$\sigma_n^2 = \|\xi_{n+m} - \hat{\xi}_{n+m}\|^2 = \mathbf{M}\{|\xi_{n+m} - \hat{\xi}_{n+m}|^2\}.$$

Заметим, что в силу стационарности последовательности ξ ошибка прогноза не зависит от m, а зависит лишь от n, т. е. от числа шагов «вперед», на которое прогнозируется ССП ξ .

Определение 4.8. ССП ξ называется сингулярной, если $\sigma_n^2=0$ при всех $n\geqslant 1$. Если же $\sigma_n^2\to D_\xi=R_\xi(0)$ при $n\to\infty$, то ССП ξ называется регулярной (или чисто случайной).

Замечание. Сингулярность ξ означает, что она абсолютно точно прогнозируется на любое количество $n \geqslant 1$ шагов по своему прошлому ξ^m . Поэтому сингулярные последовательности также называ-

ют детерминированными. Наоборот, регулярность последовательности означает, что $\widehat{\xi}_{m+n} \xrightarrow{\text{с.к.}} \mathbf{M}\{\xi_{n+m}\} = 0$ при $n \to \infty$, т. е. прогноз становится тривиальным.

Оказывается, что всякая стационарная случайная последовательность единственным образом может быть представлена в виде суммы сингулярной и регулярной последовательностей.

T е о р е м а 4.1. Пусть $\xi - CC\Pi$, тогда она единственным образом представляется в виде

$$\xi_n = \xi_n^s + \xi_n^r, \quad n \in \mathbb{Z},\tag{4.22}$$

где ξ_n^s — сингулярная часть ССП, а ξ_n^r — регулярная часть ССП, причем $(\xi_n^r,\xi_m^s)=\mathbf{cov}\{\xi_n^r,\xi_m^s\}=0$ при любых $n,\,m,\,a$ также

$$\mathcal{H}((\xi^r)^n) \subseteq \mathcal{H}(\xi^n) \quad u \quad \mathcal{H}((\xi^s)^n) \subseteq \mathcal{H}(\xi^n), \quad n \in \mathbb{Z},$$

 $m.~e.~CC\Pi~\{\xi_n^s\}~u~\{\xi_n^r\}~noдчинены~CC\Pi~\{\xi_n\}.$ Представление ξ в виде (4.22) называется разложением Вольда. Для описания структуры регулярной ССП нам понадобится понятие обновляющего процесса.

Определение 4.9. Центрированный стандартный дискретный белый шум $\varepsilon = \{\varepsilon_n\}, \ \mathbf{M}\{\varepsilon_n\} = 0, \ \mathbf{cov}\{\varepsilon_n, \varepsilon_m\} = \delta_n^m$ называется обновляющим процессом для ССП ξ , если при каждом $n \in \mathbb{Z}$

$$\mathcal{H}(\xi^n) = \mathcal{H}(\varepsilon^n), \tag{4.23}$$

где $\varepsilon^n=\{\varepsilon_n,\varepsilon_{n-1},\ldots\},$ а $\delta^m_n=0$ при $n\neq m$ и $\delta^n_n=1$ (символ Кронекера).

Таким образом, обновляющий процесс ε есть совокупность ортогональных величин, порождающих те же пространства наблюдений $\mathcal{H}(\varepsilon^n)$, $n \in \mathbb{Z}$, что и сама ССП ξ .

Tеорема 4.2. $CC\Pi$ ξ является регулярной тогда и только тогда, когда найдутся обновляющий процесс $\{\varepsilon_n\}$ и коэффициенты $\{a_k\}$, makue, что

$$\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k}, \quad n \in \mathbb{Z},$$

$$\operatorname{ide} \sum_{k=0}^{\infty} |a_k|^2 < \infty.$$

Критерий регулярности, использующий спектральные характеристики ССП ξ , имеет следующий вид.

Tеорема 4.3. $CC\Pi$ ξ регулярна тогда и только тогда, когда ξ имеет спектральную плотность $f_{\xi}(\lambda)$, причем $f_{\xi}(\lambda) > 0$ почти всюду (по мере Лебега) на $[-\pi,\pi]$ и

$$\int_{-\pi}^{\pi} \ln f_{\xi}(\lambda) \, d\lambda > -\infty.$$

77

Замечание. Если ξ имеет кусочно постоянную спектральную функцию $F_{\xi}(\lambda)$, то она сингулярна. Например, если (см. пример 3.2)

$$\xi_n = \sum_{k=1}^N z_k e^{i\lambda_k n}, \quad n \in \mathbb{Z},$$

где $\{z_k\}$ — некоррелированные случайные величины, а λ_k — различные точки полуинтервала $[-\pi,\pi)$, то $F_\xi(\lambda)$ имеет вид

$$F_{\xi}(\lambda) = \sum_{k: \lambda_k \leqslant \lambda} \sigma_k^2, \quad \text{где} \quad \sigma_k^2 = \mathbf{M}\{|z_k|^2\}.$$
 (4.24)

Эта функция имеет N разрывов первого рода в точках $\{\lambda_k\}$ и постоянна на каждом промежутке $[\lambda_k, \lambda_{k+1})$. В этом случае спектральная плотность $f_{\xi}(\lambda)$ не существует, что означает сингулярность ССП ξ .

 Π р и м е р 4.12. Вещественная ССП $\xi = \{\xi_n\}$ удовлетворяет уравнению авторегрессии первого порядка:

$$\xi_n = \alpha \xi_{n-1} + \varepsilon_n, \quad n \in \mathbb{Z},$$

где $|\alpha|<1,\ \varepsilon=\{\varepsilon_n\}$ — стандартный дискретный белый шум. Доказать, что ξ — регулярная ССП.

Решение. При каждом n выполнено равенство $\varepsilon_n = \xi_n - \alpha \xi_{n-1}$, поэтому $\mathcal{H}(\varepsilon^n) \subseteq \mathcal{H}(\xi^n)$. С другой стороны, из примера 4.7 следует, что

$$\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k}, \tag{4.25}$$

где $a_k=\alpha^k$, причем $\sum_{k=0}^{\infty}|a_k|^2=rac{1}{1-|\alpha|^2}<\infty$. Кроме того, из (4.25) сле-

дует, что $\mathcal{H}(\xi^n) \subseteq \mathcal{H}(\varepsilon^n)$. Итак, $\mathcal{H}(\varepsilon^n) = \mathcal{H}(\xi^n)$, т. е. ε — обновляющий процесс для последовательности ξ . Теперь в силу теоремы 4.2 ССП ξ является регулярной.

Теперь мы можем описать общий вид с.к.-оптимального линейного прогноза для ξ_{n+m} по наблюдениям $\mathcal{H}(\xi^m)$.

Теорема 4.4. Пусть $\pi_{\mathcal{H}(\xi^m)}$ — оператор ортогонального проектирования на подпространство $\mathcal{H}(\xi^m)$, тогда случайная величина

$$\widehat{\xi}_{m+n} = \pi_{\mathcal{H}(\xi^m)}(\xi_{m+n}) \tag{4.26}$$

является с.к.-оптимальным линейным прогнозом для ξ_{m+n} по наблюдениям $\xi^m = \{\xi_m, \xi_{m-1}, \dots\}.$

Замечание. Свойства оператора ортогонального проектирования рассмотрены в пп. 13.8 и 14.7.

 Π ример 4.13. Пусть $\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k}$, где $\{\varepsilon_n\}$ — обновляющий процесс. Показать, что

$$\widehat{\xi}_{m+n} = \sum_{k=n}^{\infty} a_k \varepsilon_{m+n-k}.$$

Найти с.к.-погрешность σ_n^2 прогноза $\widehat{\xi}_{m+n}$. Решение. Без ограничения общности можно считать, что m=0:

$$\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k} = \sum_{k=0}^{n-1} a_k \varepsilon_{n-k} + \sum_{k=n}^{\infty} a_k \varepsilon_{n-k} = \xi_n^{(1)} + \xi_n^{(2)}.$$

Очевидно, что $\xi_n^{(2)} \in \mathcal{H}(\varepsilon^0)$, а $\xi_n^{(1)} \perp \mathcal{H}(\varepsilon^0)$, так как $\mathbf{cov}\Big\{\xi_n^{(1)}, \eta\Big\} = 0$

для любой СВ $\eta \in \mathcal{H}(\varepsilon^0)$ в силу того, что ε — белый шум. Так как ε — обновляющий процесс, из (4.23) следует $\mathcal{H}(\varepsilon^0) = \mathcal{H}(\xi^0)$. Таким образом, $\xi_n - \xi_n^{(2)} \perp \mathcal{H}(\xi^0)$, т. е. $\xi_n^{(2)} = \pi_{\mathcal{H}(\xi^0)}(\xi_n)$ (см. п. 14.7). Тогда из (4.26) $\hat{\xi}_n = \xi_n^{(2)}$, что и требовалось доказать. Для нахождения σ_n^2 заметим, что

$$\sigma_n^2 = \|\xi_n - \widehat{\xi}_n\|^2 = \|\xi_n^{(1)}\|^2 = \mathbf{M} \left\{ \left| \sum_{k=0}^{n-1} a_k \varepsilon_{n-k} \right|^2 \right\}.$$

Учитывая, что $\varepsilon_i \perp \varepsilon_j$ при $i \neq j$ и $\mathbf{M}\{|\varepsilon_i|^2\} = 1$, получаем

$$\sigma_n^2 = \sum_{k=0}^{n-1} |a_k|^2.$$

Заметим, что $\sigma_n^2 o \sum_{k=0}^\infty |a_k|^2 = \mathbf{M} \big\{ |\xi_n|^2 \big\} = D_\xi$ при $n o \infty$, т. е. прогноз действительно становится тривиальным.

 Π ример 4.14. В условия примера 4.12 найти $\widehat{\xi}_n$ по наблюдениям $\xi^0 = \{\xi_0, \xi_{-1}, \dots\}.$

Решение. Так как $\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k}$, где $a_k = \alpha^k$, а $\{\varepsilon_n\}$ — обновляющий процесс, то в силу примера 4.13 имеем

$$\widehat{\xi}_n = \sum_{k=n}^{\infty} a_k \varepsilon_{n-k} = \alpha^n \sum_{k=0}^{\infty} a_k \varepsilon_{-k} = \alpha^n \xi_0.$$

При этом величина $\sigma_n^2 = \sum_{k=0}^{n-1} \alpha^{2k} = \frac{1-\alpha^{2n}}{1-\alpha^2}$ является с.к.-погрешностью прогноза $\hat{\xi}_n$. Здесь также $\sigma_n^2 \to \frac{1}{1-\alpha^2} = D_\xi$ при $n \to \infty$.

Рассмотрим способ построения прогноза для сингулярной ССП на примере почти периодической ССП (см. пример 3.2).

Пример 4.15. Построить с.к.-оптимальный прогноз для ξ_1 по наблюдениям ξ^0 в случае сингулярной последовательности $\{\xi_n\}$ из примера 3.2.

Решение. По условию

$$\xi_n = \sum_{k=1}^N z_k e^{i\lambda_k n} = \int_{-\pi}^{\pi} e^{i\lambda n} Z_{\xi}(d\lambda).$$

Пусть $\Phi(\lambda)$ — искомая частотная характеристика, дающая с.к.-оптимальный прогноз на один шаг:

$$\widehat{\xi}_1 = \int_{-\pi}^{\pi} e^{i\lambda} \Phi(\lambda) Z_{\xi}(d\lambda).$$

С.к.-погрешность этого прогноза имеет вид

$$\sigma_1^2 = \mathbf{M}\{|\xi_1 - \hat{\xi}_1|^2\} = \int_{-\pi}^{\pi} |e^{i\lambda}(1 - \Phi(\lambda))|^2 dF_{\xi}(\lambda) = \sum_{k=1}^{N} |1 - \Phi(\lambda_k)|^2 D_k,$$

где $D_k = \mathbf{M}\{|z_k|^2\}$, а $F_{\xi}(\lambda)$ — спектральная функция ССП ξ_n (3.15). В силу сингулярности прогнозируемой последовательности $\sigma_1^2 = 0$, поэтому найдется $\Phi(\lambda)$, такая, что

$$\Phi(\lambda_k) = 1, \quad k = 1, \dots, N.$$

Будем искать функцию $\Phi(\lambda)$ в виде

$$\Phi(\lambda) = \sum_{l=1}^{N} \alpha_l e^{-i\lambda l},$$

тогда для определения коэффициентов $\{\alpha_l\}$ необходимо решить систему уравнений

$$\sum_{l=1}^{N} \alpha_l e^{-i\lambda_k l} = 1, \quad k = 1, \dots, N.$$
 (4.27)

Нетрудно проверить, что решение $\{\hat{\alpha}_l\}$ системы (4.27) существует и единственно, если $\lambda_k \neq \lambda_j$ при $k \neq j$, что и предполагается по условию.

Теперь мы можем найти окончательное выражение для $\widehat{\xi}_1$:

$$\widehat{\xi}_1 = \int_{-\pi}^{\pi} e^{i\lambda} \sum_{l=1}^{N} \widehat{\alpha}_l e^{-i\lambda l} Z_{\xi}(d\lambda) = \sum_{l=1}^{N} \widehat{\alpha}_l \int_{-\pi}^{\pi} e^{i\lambda(1-l)} Z_{\xi}(d\lambda) = \sum_{l=1}^{N} \widehat{\alpha}_l \xi_{1-l}.$$

Видно, что прогноз строится по наблюдениям $\{\xi_0,\xi_{-1},\ldots,\xi_{-N+1}\}$ и является абсолютно точным, так как $\sigma_1^2=0$ по построению.

Пусть теперь $\{\xi_k\}$ — регулярная ССП со спектральной плотностью вида

$$f_{\xi}(\lambda) = \frac{1}{2\pi} |\Phi(e^{-i\lambda})|^2,$$

где $\Phi(z) = \sum_{k=0}^{\infty} b_k z^k$ имеет радиус сходимости r>1 и не имеет нулей в области $|z| \leqslant 1$.

Для построения прогноза $\hat{\xi}_n$ по наблюдениям ξ^0 в этом случае можно воспользоваться следующим алгоритмом.

1) Определить функцию

$$g_n(\lambda) = e^{i\lambda n} \Phi_n(e^{-i\lambda}) (\Phi(e^{-i\lambda}))^{-1}, \tag{4.28}$$

где $\Phi_n(z) = \sum_{k=n}^{\infty} b_k z^k$.

2) Представить $g_n(\lambda)$ в виде ряда Фурье:

$$g_n(\lambda) = c_0 + c_1 e^{-i\lambda} + c_2 e^{-i2\lambda} + \dots = \sum_{k=0}^{\infty} c_k e^{-ik\lambda}.$$
 (4.29)

3) Вычислить прогноз $\hat{\xi}_n$ в виде линейного преобразования:

$$\widehat{\xi}_n = \sum_{k=0}^{\infty} c_k \xi_{-k},\tag{4.30}$$

где $\{c_k\}$ — коэффициенты ряда (4.29).

Оказывается, что $\mathbf{M}\{\xi_n - \widehat{\xi}_n\} = 0$, т. е. оценка $\widehat{\xi}_n$ является несмещенной, а дисперсия ее ошибки (т.е. с.к.-погрешность) может быть вычислена по формуле

$$\sigma_n^2 = \mathbf{M} \{ |\xi_n - \hat{\xi}_n|^2 \} = \sum_{k=0}^{n-1} |b_k|^2.$$
 (4.31)

Из (4.31) также следует, что σ_n^2 монотонно возрастает при $n\to\infty$. Пример 4.16. В условиях примера 4.11 построить оптимальный прогноз $\widehat{\xi}_n$ для ξ_n по наблюдениям ξ^0 и определить точность этого

Решение. С учетом выражения (4.19) для спектральной плотности $f_{\xi}(\lambda)$ получаем

$$f_{\xi}(\lambda) = \frac{1}{2\pi} |\Phi(e^{-i\lambda})|^2$$
, $\Phi(z) = a(1 - \beta z)^{-1} = a \sum_{k=0}^{\infty} \beta^k z^k = \sum_{k=0}^{\infty} b_k z^k$,

где
$$a = \sqrt{D_{\xi}(1-\beta^2)}, b_k = a\beta^k, k = 0, 1, 2, \dots$$

Найдем теперь выражение для $\Phi_n(z)$:

$$\Phi_n(z) = \sum_{k=n}^{\infty} b_k z^k = \beta^n z^n a \sum_{k=0}^{\infty} \beta^k z^k = \beta^n z^n \Phi(z).$$

Поэтому $\Phi_n(z)[\Phi(z)]^{-1} = \beta^n z^n$, откуда

$$g_n(\lambda) = e^{i\lambda n} \Phi_n(e^{-i\lambda n}) [\Phi(e^{-i\lambda n})]^{-1} = e^{i\lambda n} \beta^n (e^{-i\lambda})^n = \beta^n.$$

Таким образом, в данном случае в разложении (4.29) для функции $g_n(\lambda)$ имеем $c_0 = \beta^n \neq 0$ и $c_k = 0$ для любого $k \geqslant 1$. Итак, из (4.30) теперь следует, что

$$\widehat{\xi}_n = \beta^n \xi_0, \quad n = 1, 2, \dots \tag{4.32}$$

С учетом того что $b_k = a\beta^k$, $k = 0, 1, \ldots$, по формуле (4.31) находим выражение для дисперсии ошибки прогноза ξ_n :

$$\sigma_n^2 = \mathbf{M}\{|\xi_n - \widehat{\xi}_n|^2\} = a^2 \sum_{k=0}^{n-1} \beta^{2k} = \frac{a^2(1-\beta^{2n})}{1-\beta^2} = D_{\xi}(1-\beta^{2n}). \quad (4.33)$$

Заметим, что наиболее точным является прогноз на один шаг (n=1), его точность равна $\sigma_1^2 = D_\xi(1-\beta^2)$. При увеличении n в силу условия $|\beta| < 1$ имеем $\beta^{2n} \to 0$, поэтому $\sigma_n^2 \to D_\xi$ при $n \to \infty$. Так как $D_\xi = R_\xi(0)$ — дисперсия СП $\{\xi_n\}$, видно, что точность оптимального прогноза ξ_n при $n \to \infty$ падает и приближается к точности «тривиального» прогноза $\widetilde{\xi}_n = \mathbf{M}\{\xi_n\} = 0$, для которого, очевидно,

$$\mathbf{M}\{|\xi_n - \widetilde{\xi}_n|^2\} = \mathbf{D}\{\xi_n\} = D_{\xi}. \quad \blacksquare$$

- 4.4. Задачи для самостоятельного решения.
- **1.** Доказать формулу (4.17).
- **2**. Найти спектральную плотность ССП $\{\eta_n\}$:

$$\eta_n = a_0 \xi_n + a_1 \xi_{n-1}, \quad n \in \mathbb{Z},$$

где $\{\xi_n\}$ — центрированный белый шум с дисперсией D_{ξ} .

Other.
$$f_{\eta}(\lambda) = \frac{D_{\xi}}{2\pi} (a_0^2 + a_1^2 + 2a_0 a_1 \cos \lambda).$$

3. Пусть ССП $\{\eta_n,\ n\in\mathbb{Z}\}$ удовлетворяет уравнению авторегрессии $\eta_n=\alpha\eta_{n-1}+\beta\eta_{n-2}+\xi_n,\ n\in\mathbb{Z}.$ Найти $m_\eta,$ если $\mathbf{M}\{\xi_n\}=m_\xi.$ Ответ. $m_\eta=m_\xi/(1-\alpha-\beta),$ если корни алгебраического уравнения $1-\alpha z-\beta z^2=0$ по модулю больше 1.

6 Б.М. Миллер и А.Р. Панков

4. $\eta_n = \frac{1}{2T} \sum_{k=0}^{n+T-1} \xi_{n+k}$, где T — положительное целое число, а $\{\xi_n\}$ —

белый шум с параметрами m_ξ и D_ξ . Найти m_η и D_η . О твет. $m_\eta=m_\xi,\, D_\eta=D_\xi/2T$.

5. Пусть $\eta_n = \eta_{n-1} - \frac{1}{4} \eta_{n-2} + \varepsilon_n$. Найти для $\{\eta_n\}$ явное выражение (4.9).

Указание. Использовать $\eta_n = \sum_{k=0}^{\infty} \alpha_k \varepsilon_{n-k}$ совместно с представлением

 $\eta_n-\eta_{n-1}+rac{1}{4}\eta_{n-2}=arepsilon_n,\,n\in\mathbb{Z}$, показать, что коэффициенты $\{lpha_k\}$ определяются из рекуррентных соотношений $\alpha_k = \alpha_{k-1} - \frac{1}{4} \alpha_{k-2}, k \geqslant 2, \alpha_0 = \alpha_1 = 1.$

Ответ. $\eta_n = \sum_{k=1}^{\infty} \frac{k+1}{2^k} \varepsilon_{n-k}$.

6. В условиях предыдущей задачи найти спектральную плотность СП $\{\eta_n\}$, если $\{\varepsilon_n\}$ — белый шум со спектральной плотностью $f_{\varepsilon}(\lambda)=1$.

O т вет. $f_{\eta}(\lambda) = \frac{1}{1,5625 - 2,5\cos\lambda + \cos^2\lambda}$.

7. Пусть $\xi_k=\theta_1+\theta_2k+\varepsilon_k,\,k=0,1,\ldots$, где $\{\varepsilon_k\}$ — центрированный белый шум с дисперсией D_ε . Оценка η_n полезного сигнала $\varphi(n)=\theta_1+\theta_2n$

$$\eta_n = \frac{1}{n+1} \sum_{k=0}^n \xi_k.$$

Найти с.к.-погрешность оценки η_n , если $\{\theta_1,\theta_2\}$ не зависят от $\{\varepsilon_k\}$, а параметры $m_{\,\theta_2}$ и $D_{\,\theta_2}$ известны.

Ответ. $\Delta_n = \mathbf{M}\{|\eta_n - \varphi(n)|^2\} = 0.25 n^2 (m_{\theta_2}^2 + D_{\theta_2}) + D_{\varepsilon}/(n+1).$

8. Пусть ССП, имеющая спектральную функцию $F_{\xi}(\lambda)$, подвергается линейному стационарному преобразованию с частотной характеристикой $\Phi(\lambda)$. Найти явный вид спектральной функции $F_{\eta}(\lambda)$.

Ответ.
$$F_{\eta}(\lambda) = \int\limits_{-\pi}^{\lambda} |\Phi(\mu)|^2 dF_{\xi}(\mu).$$

9. СП η получена из стандартного белого шума ε преобразованием вида

$$\eta_n = \frac{1}{2} \left(\varepsilon_{n-1} + \varepsilon_{n+1} \right), \quad n \in \mathbb{Z}.$$

Доказать стационарность СП $\{\eta_n\}$ и вычислить ее спектральную плотность. Указание. Воспользоваться теоремой 3.4. Ответ. $f_{\eta}(\lambda) = \frac{1}{2\pi}\cos^2\lambda$.

O т в е т.
$$f_{\eta}(\lambda) = \frac{1}{2\pi} \cos^2 \lambda$$

10. Пусть $m_{\xi}=3,\ f_{\xi}(\lambda)=5+4\cos\lambda.$ Найти с.к.-оптимальный прогноз $\widehat{\xi}_n$ по наблюдениям ξ^0 и дисперсию ошибки прогноза Δ_n для всех

Ответ. $\widehat{\xi}_1=3+0.5\sum_{k=0}^{\infty}(-0.5)^k(\xi_{-k}-3),\ \Delta_1=8\pi$ и $\widehat{\xi}_n=m_\xi=3,\ \Delta_n=D_\xi=10\pi,$ если $n\geqslant 2.$

§ 5. Цепи Маркова

5.1. Вероятностные характеристики цепей Маркова. Цепью Маркова, которая далее для краткости обозначается ЦМ, называется последовательность вещественных случайных величин, обладающая марковским свойством.

Пусть $E=\{e_0,e_1,\ldots,e_k,\ldots\}$ — некоторое конечное или счетное множество. Рассмотрим последовательность случайных величин $\xi_n,$ $n=0,1,\ldots$, которые принимают значения из множества E с вероятностями $\pi_k(n)=\mathbf{P}\{\xi_n=e_k\},\ k=0,1,\ldots$ Таким образом, ξ_n — случайная величина с дискретным (конечным или счетным) множеством значений E. Случайная последовательность $\xi=\{\xi_n,n=0,1,\ldots\}$ указанного типа называется θ искретной цепью.

Определение 5.1. Случайная последовательность ξ называется $\partial uckpemhoй целью Маркова, если она является дискретной целью и обладает марковским свойством, т.е. для каждого <math>n \geqslant 1$ и любых элементов x_0, x_1, \ldots, x_n множества E выполнено

$$\mathbf{P}\{\xi_n = x_n \mid \xi_{n-1} = x_{n-1}, \dots, \xi_0 = x_0\} = \mathbf{P}\{\xi_n = x_n \mid \xi_{n-1} = x_{n-1}\}.$$
(5.1)

Замечание. Соотношение (5.1) на языке условных вероятностей (см. п. 14.5) означает, что

$$\mathbf{P}\{\xi_n = x_n \mid \mathcal{F}_{n-1}\} = \mathbf{P}\{\xi_n = x_n \mid \xi_{n-1}\},\$$

где \mathcal{F}_{n-1} — σ -алгебра, порожденная СВ $\{\xi_0, \ldots, \xi_{n-1}\}^*$.

Из определения (5.1) следует, что дискретная цепь Маркова является частным случаем марковского процесса, общее определение которого было дано в п. 2.4.

Множество E обычно называют множеством (пространством) состояний ЦМ. Если в момент $n\geqslant 0$ произошло событие $\{\xi_n=e_k\}$, то говорят, что ЦМ находится в состоянии e_k . Если же известно, что для $n\geqslant 1$ выполнено $\xi_{n-1}=e_k$ и $\xi_n=e_j$, то говорят, что цепь на n-м шаге перешла из состояния e_k в состояние e_j . Если E имеет конечное число состояний, то соответствующая ЦМ называется конечной.

Определение 5.2. Число $p_{k,j}(n)=\mathbf{P}\{\xi_n=e_j\mid \xi_{n-1}=e_k\}$ называется вероятностью перехода из состояния $e_k\in E$ в состояние $e_j\in E$ за один шаг в момент $n\geqslant 1$.

О пределение 5.3. Матрица P(n), элементами которой являются вероятности перехода $p_{k,j}(n)$, называется nepexodной матрицей ЦМ ξ (за один шаг в момент $n\geqslant 1$).

Определение 5.4. Вероятность $\pi_k(n) = \mathbf{P}\{\xi_n = e_k\}, e_k \in E$, называется вероятностью состояния e_k в момент времени $n \geqslant 0$, а вектор $\pi(n) = \{\pi_0(n), \pi_1(n), \dots\}^*$ — распределением вероятностей состояний ЦМ ξ в момент $n \geqslant 0$.

Очевидно, что $\pi(n)$ удовлетворяет при каждом $n<\infty$ условию нормировки $\sum_{k=0}^{\infty}\pi_k(n)=1.$ Компоненты вектора $\pi(n)$ показывают, какие из возможных состояний ЦМ в момент времени n являются

кие из возможных состояний ЦМ в момент времени n являются наиболее вероятными, а какие — нет. Таким образом, знание последовательности $\{\pi(n)\}$ позволяет составить представление о поведении ЦМ во времени.

Пример 5.1. Доказать, что при каждом $n\geqslant 1$ выполнено рекуррентное соотношение

$$\pi(n) = P^*(n)\pi(n-1). \tag{5.2}$$

Решение. Сформируем систему гипотез $H_k=\{\xi_{n-1}=e_k\}$. Очевидно, что H_k , H_j несовместны при $k\neq j$, причем $\sum_{k=0}^\infty H_k=\Omega$. По определению $\mathbf{P}\{H_k\}=\mathbf{P}\{\xi_{n-1}=e_k\}=\pi_k(n-1),\ k=0,1,\ldots$ Пусть $A_m=\{\xi_n=e_m\}$, тогда

$$\mathbf{P}{A_m} = \pi_m(n), \quad \mathbf{P}{A_m \mid H_k} = \mathbf{P}{\xi = e_m \mid \xi_{n-1} = e_k} = p_{k,m}(n).$$

Для вычисления $\mathbf{P}\{A_m\}$ применим формулу полной вероятности (см. п. 14.1):

$$\mathbf{P}\{A_m\} = \pi_m(n) = \sum_{k=0}^{\infty} \mathbf{P}\{H_k\} \mathbf{P}\{A_m \mid H_k\} = \sum_{k=0}^{\infty} \pi_k(n-1) p_{k,m}(n).$$
(5.3)

Теперь нетрудно убедится в том, что формула (5.3), представленная в матричном виде, совпадает с (5.2). ■

Формула (5.2) задает рекуррентный алгоритм вычисления вероятностей состояний $\pi(n)$, $n \ge 1$. Очевидно, что для вычисления $\pi(n)$ необходимо задать начальное распределение вероятностей $\pi(0)$ и все переходные матрицы $\{P(k), k=1,\ldots,n\}$.

Определение 5.5. Цепь Маркова называется однородной, если для всех $n\geqslant 1$ выполнено P(n)=P, т.е. переходная матрица P(n) не зависит от времени.

Пример 5.2. Показать, что для однородной ЦМ распределение $\pi(n), n \geqslant 1$, полностью определяется переходной матрицей P и начальным распределением вероятностей состояний $\pi(0)$.

85

Решение. Пусть $n \ge 1$ и задано начальное распределение $\pi(0)$. Тогда из (5.2) следует, что $\pi(1) = P^*\pi(0)$. Далее, $\pi(2) = P^*\pi(1) =$ $= P^*(P^*\pi(0)) = (P^*)^2\pi(0)$. Продолжая этот процесс, получаем окончательно

$$\pi(n) = (P^*)^n \pi(0) \quad \forall n \geqslant 1.$$
 (5.4)

Более того, если обозначить через

$$p_{k,j}^{(m)}(n) = \mathbf{P}\{\xi_{n+m} = e_j \mid \xi_n = e_k\}$$
 (5.5)

вероятность перехода из e_k в e_i за $m\geqslant 1$ шагов, то из (5.4) следует, что для однородной ЦМ матрица $P^{(m)}(n) = \{p_{k,j}^{(m)}(n)\}$ имеет вид $P^{(m)}(n) = P^m$, поэтому

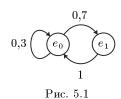
$$\pi(n+m) = (P^*)^m \pi(n). \tag{5.6}$$

Таким образом, пара $\{P, \pi(0)\}$ полностью описывает вероятностную структуру однородной ЦМ. ■

Для описания однородной ЦМ удобно использовать ее графическое представление в виде размеченного стохастического графа, вершинами которого являются состояния $\{e_k\}$, стрелками указаны возможные переходы, а рядом с каждой стрелкой указана вероятность соответствующего перехода за один шаг.

Пример 5.3. ЦМ задана стохастическим графом (рис. 5.1). Найти вероятности состояний на третьем шаге при условии, что в начальный момент ЦМ находилась в состоянии e_1 .

Решение. Составим матрицу P переходных вероятностей: $p_{00} = 0.3$; $p_{01} = 0.7$; $p_{10}=1;\,p_{11}=0$ (переход $e_1\to e_1$ запрещен по условию). Таким образом, матрица P^* имеет элементы $q_{00} = 0.3$; $q_{01} = 1$; $q_{10} = 0.7$; $q_{11} = 0$, а $\pi(0) = \{0; 1\}^*$ — начальное распределение вероятностей состояний. Используя (5.2), последовательно находим $\pi(1) = P^*\pi(0) =$



 $= \{1; 0\}^*, \ \pi(2) = P^*\pi(1) = \{0,3; 0,7\}^*, \ \pi(3) = P^*\pi(2) = \{0,79; 0,21\}^*.$ Очевидно, что тот же результат будет получен по формуле $\pi(3) = (P^*)^3 \pi(0)$.

Элементы $\{p_{ij}\}$ матрицы перехода P удовлетворяют следующим двум условиям:

ум условиям:
1)
$$p_{ij} \geqslant 0$$
 $\forall i, j = 0, 1, ...;$
2) $\sum_{j=0}^{\infty} p_{ij} = 1$ $\forall i = 0, 1, ...$

Матрицы, удовлетворяющие свойствам 1, 2, называются *стоха*стическими.

Условие 2 означает, что на каждом шаге ЦМ обязательно либо переходит в какое-то новое состояние из числа допустимых, либо остается в прежнем состоянии. Практические ситуации, адекватно описываемые ценями Маркова, встречаются весьма часто, так как марковское свойство фактически означает следующее: если некоторый процесс обладает марковским свойством, то его «будущее» при фиксированном «настоящем» не зависит от «прошлого» (альтернативная формулировка марковского свойства). Следующий пример поясняет смысл этих терминов и самого марковского свойства.

 Π ример 5.4. Доказать, что альтернативная формулировка марковского свойства следует из (5.1).

Решение. Из (5.1) следует, что $\forall k \geqslant 0$ и $\forall x_{k+1} \in E$

$$\mathbf{P}\{\xi_{k+1} = x_{k+1} \mid \xi_k, \dots, \xi_0\} = \mathbf{P}\{\xi_{k+1} = x_{k+1} \mid \xi_k\}. \tag{5.7}$$

Нетрудно проверить, что для произвольных событий A, B и C выполнено соотношение $\mathbf{P}\{AB \mid C\} = \mathbf{P}\{A \mid BC\}$ $\mathbf{P}\{B \mid C\}$. Используя это соотношение необходимое число раз для $n \geqslant k+1$, получаем с учетом (5.7)

$$\mathbf{P}\{\xi_n = x_n, \dots, \xi_{k+1} = x_{k+1} \mid \xi_k, \dots, \xi_0\} =$$

$$= \mathbf{P}\{\xi_n = x_n, \dots, \xi_{k+1} = x_{k+1} \mid \xi_k\} \quad (5.8)$$

для произвольных $x_{k+1}, \ldots, x_n \in E$. Обозначим $\mathbf{H} = \{\xi_k = x_k\}$ — «настоящее» рассматриваемой ЦМ, $\mathbf{B} = \{\xi_n = x_n, \ldots, \xi_{k+1} = x_{k+1}\}$ — ее «будущее» и $\mathbf{\Pi} = \{\xi_{k-1} = x_{k-1}, \ldots, \xi_0 = x_0\}$ — «прошлое», где $\{x_0, \ldots, x_{k-1}\}$ — некоторые значения из E, которые ЦМ принимала до текущего момента времени k. Тогда соотношение (5.8) означает, что $\mathbf{P}\{\mathbf{B} \mid \mathbf{H}\mathbf{\Pi}\} = \mathbf{P}\{\mathbf{B} \mid \mathbf{H}\}$. Отсюда

$$\mathbf{P}\{\mathbf{B}\mathbf{\Pi} \mid \mathbf{H}\} = \mathbf{P}\{\mathbf{B} \mid \mathbf{H}\mathbf{\Pi}\}\mathbf{P}\{\mathbf{\Pi} \mid \mathbf{H}\} = \mathbf{P}\{\mathbf{B} \mid \mathbf{H}\}\mathbf{P}\{\mathbf{\Pi} \mid \mathbf{H}\},$$

т. е. события Б и Π , рассматриваемые при условии выполнения события H, независимы. \blacksquare

Доказанное утверждение обобщает формулу (2.7).

Рассмотрим теперь классический пример цепи Маркова, связанный с игрой двух лиц.

Пример 5.5. Пусть целые числа $m>0,\ M>0$ — начальные капиталы соответственно первого и второго игроков. Проводятся последовательно игры, в результате каждой из которых с вероятностью p капитал первого игрока увеличивается на 1 и с вероятностью q=1-p уменьшается на 1. Результаты любой игры не зависят от результатов любых других игр. Пусть ξ_n — капитал первого игрока после n игр. Предполагается, что в случае $\xi_n=0$ или $\xi_n=L=m+M$ игра прекращается (ситуация разорения одного из игроков). Показать, что $\{\xi_n\}$ — ЦМ, найти переходную матрицу P и построить стохастический граф цепи.

Решение. По определению $\{\xi_n\}$ — дискретная цепь с множеством возможных состояний $E=\{0,1,\ldots,L\}$. Пусть $x_0=m,$ x_1,\ldots,x_{n-1} — реализовавшиеся значения ξ_k при $k\leqslant n-1$, т. е. $\xi_k=x_k,\ k=0,1,\ldots,n-1$. Будем считать, что $x_k\neq 0$ или L. Тогда $\xi_n=\xi_{n-1}+v_n$, где v_n — результат n-й игры, причем $\mathbf{P}\{v_n=1\}=p,$ $\mathbf{P}\{v_n=-1\}=q,$ и v_n не зависит от $\{\xi_0,\ldots,\xi_{n-1}\}$. Поэтому

$$\mathbf{P}\{\xi_n = x_{n-1} + 1 \mid \xi_{n-1} = x_{n-1}, \dots, \xi_0 = m\} =$$

$$= \mathbf{P}\{\xi_n = x_{n-1} + 1 \mid \xi_{n-1} = x_{n-1}\} = \mathbf{P}\{v_n = 1\} = p.$$

Аналогично,

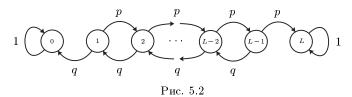
$$\mathbf{P}\{\xi_n = x_{n-1} - 1 \mid \xi_{n-1} = x_{n-1}, \dots, \xi_0 = m\} =$$

$$= \mathbf{P}\{\xi_n = x_{n-1} - 1 \mid \xi_{n-1} = x_{n-1}\} = \mathbf{P}\{v_n = -1\} = q.$$

Наконец, $\mathbf{P}\{\xi_n=x_n\mid \xi_{n-1}=x_{n-1},\ldots,\xi_0=m\}=0$, если $x_n\neq x_{n-1}\pm 1$. Таким образом, $\{\xi_n\}$ обладает марковским свойством и является однородной ЦМ в силу предположения $p=\mathrm{const.}$

Переходная матрица $P=\{p_{ij}\},\ i,j=0,\ldots,L,$ имеет элементы $p_{ii}=0,\ p_{i,i+1}=p,\ p_{i,i-1}=q,\ p_{i,i\pm l}=0,$ для $l\geqslant 2,\ i=1,2,\ldots,L-1.$ Наконец, $p_{00}=p_{LL}=1$ по условию задачи. Стохастический граф построенной ЦМ изображен на рис. 5.2.

Полученная модель игры двух лиц известна в теории марковских случайных процессов как случайное блуждание частицы по целым точкам отрезка с двумя поглощающими барьерами. ■



Рассмотренная в примере 5.5 модель приводит к ЦМ с конечным множеством состояний E. Если же второй игрок бесконечно богат (т.е. $M=\infty$), то $E=\{0,1,\dots\},\,\{\xi_n\}$ — однородная ЦМ со счетным множеством состояний, а соответствующая математическая модель — блуждание по целым точкам оси с одним (левым) поглощающим барьером.

5.2. Эргодические цепи Маркова. В данном пункте будут рассматриваться только *однородные* цепи Маркова с конечным или счетным числом состояний. Для таких цепей при определенных условиях выполняется следующее свойство: $\pi(n) \to \pi^0$ при $n \to \infty$, причем

предельное распределение π^0 вероятностей состояний ЦМ не зависит от начального распределения $\pi(0)$, а определяется лишь переходной матриней P. В этом случае говорят, что ШМ обладает эргодическим свойством, которое фактически означает, что вероятности состояний $\pi(n)$ по мере увеличения n практически перестают изменяться, а система, описываемая соответствующей цепью, переходит в стационарный режим функционирования.

Для выяснения условий эргодичности однородной ЦМ необходимо

ввести классификацию ее возможных состояний. Пусть $p_{k,j}^{(n)} = \mathbf{P}\{\xi_n = e_j \mid \xi_0 = e_k\}$ — вероятность перехода за n шагов из состояния e_k в состояние e_j , а

$$f_j(n) = \mathbf{P}\{\xi_n = e_j, \xi_{n-1} \neq e_j, \dots, \xi_1 \neq e_j \mid \xi_0 = e_j\}$$

обозначает вероятность первого возвращения за n шагов в состоя-

- 1) Состояние $e_k \in E$ называется несущественным, если найдется $e_j\in E$, такое, что $p_{k,j}^{(m)}>0$ для некоторого $m\geqslant 1$, но $p_{j,k}^{(n)}=0$ для всех $n\geqslant 1$. В противном случае состояние e_k называется cywecmbenhum.
- 2) Состояния $e_k, e_i \in E$ называются сообщающимися, если найдутся $m,\,n\geqslant 1$, такие, что $p_{k,j}^{(m)}>0$ и $p_{j,k}^{(n)}>0$. 3) Состояние $e_k\in E$ называется возвратным, если $F_k=1$, и невоз-
- вратным, если $F_k < 1$, где $F_k = \sum_{n=1}^{\infty} f_k(n)$.
 - 4) Состояние $e_k \in E$ называется *нулевым*, если $\lim_{n\to\infty} p_{k,k}^{(n)} = 0$.
- 5) Пусть d_k наибольший общий делитель чисел $\{n\geqslant 1:$ $f_k(n) > 0$. Состояние e_k называется периодическим с периодом d_k , если $d_k > 1$. В противном случае состояние — апериодическое.

Заметим, что возвращение в периодическое состояние e_k с положительной вероятностью возможно только за число шагов, кратное $d_k > 1$, причем d_k — наибольшее целое число, обладающее указанным свойством.

 Π р и м е р 5.6. Пусть ξ_n — координата частицы, блуждающей по целым точкам на вещественной оси одним из следующих двух способов: находясь в произвольной допустимой точке на оси, частица

- а) с вероятностью p сдвигается на 1 вправо, а с вероятностью qостается на месте;
- б) с вероятностью p сдвигается на 1 вправо и с вероятностью q на 1 влево, где 0 , <math>q = 1 - p и $\xi_0 = 0$.

Провести классификацию состояний ЦМ $\{\xi_n\}$. Решение. а) Здесь $E=\{0,1,\dots\}$, причем для любого $j\geqslant 0$ выполнено $f_j(1)=q<1$ и $f_j(n)=0$ при $n\geqslant 2.$ Отсюда $F_j=\sum_{n=1}^{\infty}f_j(n)=$ = q < 1, поэтому все состояния — невозвратные. Так как $p_{j+1,j}^{(n)} = 0$

89

для $n\geqslant 1,\ j\in E,$ то все состояния — несущественные. Очевидно, что $p_{i,j}^{(n)} = q^n$ — вероятность n раз подряд остаться на месте, поэтому $p_{j,j}^{(n)} o 0, \ n o \infty$ и, следовательно, все состояния — нулевые. Заметим, что $p_{j,j}^{(1)}=q>0,\, p_{j,j}^{(2)}=q^2>0,$ поэтому $d_j=1$ и все состояния апериодические. Наконец, $p_{j,k}^{(n)}=0$ при любых j>k и $n\geqslant 1$, поэтому никакие два состояния цепи не являются сообщающимися.

б) Для рассмотрения второго случая воспользуемся следующим утверждением: $cocmoshue\ e_i$ является возвратным тогда u только тогда, когда $P_j = \sum_{n=1}^\infty p_{j,j}^{(n)} = \infty,$ причем для невозвратного состояния $F_j = \frac{P_j}{1 + P_i}.$

Каждое состояние e_i является периодическим с периодом 2, так как возвращение в состояние e_i возможно лишь за четное число шагов. Очевидно также, что все состояния существенны и сообщаются. Однако все состояния являются нулевыми. Действительно, для любого $e_j \in E$ имеем по формуле Бернулли: $p_{j,j}^{(2m)} = C_{2m}^m (pq)^m = \frac{(2m)!}{(m!)^2} (pq)^m,$ $p_{j,j}^{(2m+1)} = 0$. Используя формулу Стирлинга $m! \sim m^m e^{-m} \sqrt{2\pi m}$, получаем: $p_{j,j}^{(2m)}\sim \frac{(4pq)^m}{\sqrt{\pi m}} \to 0$ при $m\to\infty,$ т. е. все состояния цепи нулевые. Кроме того, если p=q=1/2, то $P_j=\sum_{m=1}^\infty p_{j,j}^{(2m)}=\infty$, т. е. все состояния — возвратные. Если же $p\neq q$, то $P_j<\infty$, т. е. все

Замечание. Из результата примера 5.6 также получаем, что любое невозвратное состояние $e_i \in E$ является нулевым, так как из сходимости ряда $\sum_{n=1}^{\infty}p_{j,j}^{(n)}$ следует, что $p_{j,j}^{(n)}\to 0,\; n\to \infty.$

состояния — невозвратные. ■

Определение 5.6. ЦМ называется неразложимой, если все ее состояния — существенные и сообщающиеся. В противном случае ЦМ называется разложимой.

Определение 5.7. Неразложимая ЦМ называется апериодиче $c\kappa o \ddot{u}$, если все ее состояния — апериодические.

Замечание. Для неразложимой ЦМ справедливо «свойство солидарности»:

- а) если хотя бы одно состояние возвратно, то и все возвратны;
- б) если хотя бы одно состояние нулевое, то и все нулевые;
- в) если хотя бы одно состояние имеет период $d \geqslant 1$, то и все остальные периодичны с периодом d.

Таким образом, неразложимая ЦМ будет апериодической, если хотя бы одно из ее состояний — апериодическое.

Пример 5.7. Исследовать цепи Маркова, описанные в примерах 5.3, 5.5 и 5.6 на разложимость и периодичность.

Решение. 1) ЦМ, рассмотренная в примере 5.3, является неразложимой и апериодической конечной цепью Маркова, так как все ее состояния — существенные, сообщающиеся и апериодические.

- 2) ЦМ из примера 5.5, описывающая игру двух лиц, разложима. Действительно, состояния $e_0=0$ и $e_L=L$ являются существенными, а состояния e_k , $k=1,\ldots,L-1$, несущественными. При этом состояния $e_0=0$ и $e_L=L$ не сообщаются, так как $p_{0,L}^{(n)}=0$, $p_{L,0}^{(n)}=0$, $n\geqslant 1$. Таким образом, все состояния данной цепи можно разбить на непересекающиеся классы E_0,E_1,E_2 : $E=E_0\cup E_1\cup E_2$, где $E_0=\{e_1,\ldots,e_{L-1}\}$ класс несущественных состояний, $E_1=\{e_0\}$, $E_2=\{e_L\}$ классы существенных состояний, причем E_1 и E_2 не сообщаются. Все состояния из E_0 периодические с периодом 2, а состояния из E_1 и E_2 апериодические.
- 3) ЦМ из примера 5.6 в случае а) разложима, так как ни одно из ее состояний не является существенным. В случае б), наоборот, все состояния существенные и сообщающиеся, поэтому ЦМ является неразложимой и имеет счетное число состояний. Однако она периодическая с периодом d=2.

T е о р е м а 5.1. Пусть однородная ЦМ имеет переходную матрицу $P = \{p_{i,j}\}$ и обладает следующими свойствами:

- 1) цепь неразложима и апериодична;
- 2) найдется состояние $e_k \in E$, такое, что время возвращения в него, т. е. дискретная случайная величина $\tau_k = \inf\{n \geqslant 1 \colon \xi(n) = e_k\}$ с распределением

$$\mathbf{P}\{\tau_k = n \mid \xi(0) = e_k\} = f_k(n), \quad n = 1, 2, \dots,$$

имеет конечное среднее

$$\mu_k = \mathbf{M}\{\tau_k \mid \xi(0) = e_k\} = \sum_{n=1}^{\infty} n f_k(n) < \infty.$$

Выполнение условий $1,\ 2$ необходимо и достаточно для того, чтобы для любых $i,j=0,1,\ldots$ существовали не зависящие от i пределы:

$$p_{i,j}^{(n)} \to p_j > 0 \quad npu \quad n \to \infty.$$
 (5.9)

Числа $\{p_i\}$ являются единственным решением системы уравнений

$$p_j = \sum_{k=0}^{\infty} p_{k,j} p_k, \quad j = 0, 1, \dots,$$
 (5.10)

$$\sum_{j=0}^{\infty} p_j = 1. (5.11)$$

91

Определение 5.8. Цепь Маркова, удовлетворяющая приведенным выше условиям (5.9)–(5.11), называется эргодической, а распределение вероятностей $p = \{p_0, p_1, \dots\}^*$ — стационарным распределением IIM.

Для ЦМ с конечным множеством состояний E наиболее сложно проверяемое условие 2 теоремы 5.1 становится излишним. Действительно, справедливо следующее утверждение.

Теорема 5.2. Для того чтобы конечная ЦМ была эргодической, необходимо и достаточно, чтобы она была неразложимой и апериодической.

5.3. Предельные вероятности состояний цепи Маркова. В данном пункте мы рассмотрим вопрос, связанный с существованием предельных вероятностей состояний ЦМ π^0 : $\pi(n) \to \pi^0$, $n \to \infty$ при неограниченном увеличении числа шагов n. Для эргодической ЦМ этот вопрос уже фактически решен, о чем свидетельствует следующий пример.

Пример 5.8. Доказать, что для эргодической ЦМ предельное распределение $\pi^0 = \{\pi_0, \pi_1, \dots\}^*$ существует и единственно, является стационарным и удовлетворяет системе уравнений

$$\pi^0 = P^* \pi^0, \tag{5.12}$$

$$\sum_{k=0}^{\infty} \pi_k = 1. {(5.13)}$$

Решение. Пусть $\pi_k(n) = \mathbf{P}\{\xi_n = e_k\}$ при условии, что задано начальное распределение $\pi(0)$, тогда

$$\pi_k(n) = \sum_{i=0}^{\infty} p_{i,k}^{(n)} \pi_i(0).$$

Так как ЦМ — эргодическая, то для каждого $k\geqslant 0$ выполнено $p_{i,k}^{(n)}\to p_k>0$ при $n\to\infty$, причем p_k не зависит от $\pi(0)$. Следовательно, при $n\to\infty$

$$\pi_k(n) \to \sum_{i=0}^{\infty} p_k \pi_i(0) = p_k \sum_{i=0}^{\infty} \pi_i(0) = p_k, \quad k = 0, 1, \dots$$

Таким образом, $\pi_k(n) \to \pi_k = p_k$, поэтому все свойства предельного распределения $\pi^0 = \{\pi_k, k = 0, 1, \dots\}$ совпадают со свойствами стационарного распределения $\{p_k, k = 0, 1, \dots\}$. Теперь, заменяя в (5.10), (5.11) p_k на π_k и переписывая (5.10) в матричной форме, получаем (5.12), (5.13). Распределение π^0 единственно в силу единственности решения системы (5.12), (5.13) и стационарно, так как π^0 не зависит от $\pi(0)$.

Рассмотрим конкретный пример вычисления стационарных вероятностей состояний эргодической ЦМ.

 Π ример 5.9. Найти π^0 для ЦМ из примера 5.3.

Решение. Выше (см. пример 5.7) показано, что ЦМ из примера 5.3 является неразложимой и апериодической. Кроме того, она имеет конечное число состояний, поэтому ее эргодичность следует из теоремы 5.2. Используя уравнения (5.12) и (5.13), а также выражение для P^* , находим

$$\begin{cases} 0.3 \, \pi_0 + \pi_1 &= \pi_0, \\ 0.7 \, \pi_0 &= \pi_1, \\ \pi_0 + \pi_1 &= 1. \end{cases}$$

Заметим, что в данном случае система уравнений $\pi^0 = P^*\pi^0$ дает нам лишь одно уравнение $(I - P^* - вырожденная матрица, поскольку$ матрица P — стохастическая). Единственное решение для π^0 дает система уравнений, включающая условие нормировки:

$$\begin{cases} 0, 7\pi_0 - \pi_1 &= 0, \\ \pi_0 + \pi_1 &= 1. \end{cases}$$

Отсюда $\pi_0 = 10/17$, $\pi_1 = 7/17$.

Заметим, что практическое нахождение π^0 из (5.12), (5.13) возможно в общем случае лишь для конечных цепей Маркова.

Соответствующий алгоритм вычисления стационарного распределения π^0 для конечной эргодической ЦМ имеет следующий вид:

- 1) составить систему уравнений $\pi^0 = P^*\pi^0$;
- 2) заменить в полученной системе одно из уравнений на условие нормировки (5.13), при этом полученная система уравнений будет иметь вид $G\pi^0=g$, где $g\neq 0$, а матрица G — невырожденная; 3) решить систему $G\pi^0=g$ и определить π^0 .

Найденное π^0 будет удовлетворять одновременно системе уравнений (5.12) и условию нормировки (5.13). Заметим также, что π^0 не будет зависеть от того, какое именно из уравнений системы (5.12) было нами заменено на условие (5.13).

Замечание. Для цепей Маркова с конечным множеством состояний понятие неразложимости может быть обобщено: конечная ЦМ называется неразложимой, если $E = E_0 \cup E_1$, где E_0 —класс несущественных состояний, а $E_1 - e \partial u h c m e e h h u \ddot{u}$ класс существенных сообщающихся состояний.

В этом случае справедливы следующие утверждения:

- 1) если класс состояний E_1 апериодический, то существует единственный вектор предельных вероятностей $\pi^0 = \{\pi_k\}$ с неотрицательными компонентами, удовлетворяющий (5.12), (5.13);
 - 2) $\pi_k = 0$, если $e_k \in E_0$, и $\pi_i > 0$, если $e_i \in E_1$.

Пример 5.10. ЦМ задана стохастическим графом (рис. 5.3). Найти стационарное распределение вероятностей состояний.

Решение. Очевидно, что e_0 — несущественное состояние, а $\{e_1,e_2\}$ образуют класс существенных апериодических сообщающихся состояний. Поэтому стационарное распределение $\pi^0=\{\pi_0,\pi_1,\pi_2\}^*$ существует, причем $\pi_0=0$. Вероятности π_1 и π_2 определяются из системы уравнений $\pi^0=P^*\pi^0$ и условия $\pi_1+\pi_2=1$ (см. приведенный выше алгоритм):

$$\begin{cases} 0.5 \, \pi_1 + 0.2 \, \pi_2 &= \pi_1, \\ \pi_1 + \pi_2 &= 1, \end{cases}$$

откуда $\pi_1=2/7, \ \pi_2=5/7.$ Итак, $\pi(n)\to\pi^0=\{0,\,2/7,\,5/7\}^*$ при $n\to\infty$ для любого начального распределения вероятностей состояний $\pi(0)$.

Если ЦМ не обладает свойством эргодичности, то вектор предельных вероятностей π^0 , даже если он существует, не является стационарным распределением вероятностей состояний ЦМ (например, π^0 не удовлетворяет условию нормировки (5.13) или же зависит от начального распределения $\pi(0)$ и т. п.). В этом случае будем называть π^0 вектором финальных вероятностей состояний ЦМ.

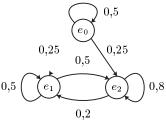


Рис. 5.3

Типичные случаи подробно изучены в следующих примерах. Пример 5.11. Найти финальные вероятности состояний ЦМ, описывающей блуждание частицы по целым точкам прямой (см. пример 5.6).

Решение. В примере 5.6 было показано, что все состояния ЦМ — нулевые. Следовательно, $p_{i,j}^{(n)} \to 0$ при $n \to \infty$ для любых $i,j \geqslant 0$. Отсюда

$$\lim_{n \to \infty} p_{0,j}^{(n)} = \lim_{n \to \infty} \pi_j(n) = \pi_j = 0, \quad j = 0, 1, \dots$$

Таким образом, π^0 — нулевой вектор и

$$\pi_0 + \pi_1 + \ldots + \pi_k + \ldots = 0.$$

Следовательно, π^0 не является стационарным распределением вероятностей состояний ЦМ. Очевидно, что отсутствие стационарного распределения вызвано нарушением условия 2 теоремы 5.1, так как в данном случае $\mu_j = \infty$ для любого $e_j \in E$.

Если условие 1 теоремы 5.1 не выполнено, то финальные вероятности состояний либо вообще не существуют, либо зависят от начального распределения вероятностей состояний.

Пример 5.12. Конечная цепь Маркова задана стохастическим графом (рис. 5.4). Показать, что при любом $\pi(0) \neq \{1/2, 1/2\}^*$ финальные вероятности не существуют.

Решение. ЦМ имеет переходную матрицу P с элементами $p_{00}=p_{11}=0,\,p_{01}=p_{10}=1,\,$ поэтому соотношения (5.2), описывающие эволюцию вектора $\pi(n)=\{\pi_0(n),\pi_1(n)\}^*,\,$ принимают следующий вид:

$$\begin{cases} \pi_0(n) = \pi_1(n-1), & n = 1, 2, \dots, \\ \pi_1(n) = \pi_0(n-1). \end{cases}$$

Пусть $\pi(0) = \{p, q\}^*$, тогда при $p \neq q$ имеем $\pi_0(n) = p$, если n = 2k и $\pi_0(n) = q$, если n = 2k + 1, $k = 0, 1, \ldots$ Очевидно, что в этом слу-

чае последовательность $\{\pi_0(n)\}$ предела не имеет. Аналогично, нет предела и у последовательности $\{\pi_1(n)\}$. Если же p=q=1/2, то существует вектор финальных вероятностей $\pi^0=\{1/2,1/2\}^*$, так как в этом случае $\pi_0(n)=\pi_1(n)=1/2$ для всякого $n\geqslant 0$. Полученный результат объясняется тем, что рассмотренная цепь Маркова является неразложимой, но периодической с периодом d=2, и, следовательно, условие 1 теоремы 5.1 не

Рис. 5.4 одом d = 2, и, выполнено.

Рассмотрим теперь поведение вероятностей состояний разложимых ЦМ. Очевидно, что стационарных распределений здесь не будет, однако финальные вероятности при определенных условиях будут существовать.

Пример 5.13. ЦМ, описывающая случайное блуждание частицы по целым неотрицательным точкам прямой $E=\{0,1,\dots\}$ с поглощающим состоянием $e_0=0$, задана стохастическим графом (рис. 5.5), где $0< p<1,\ q=1-p$. Известно, что в начальный момент времени частица находилась в некотором состоянии $e_m=m\geqslant 0$. Найти финальные вероятности состояний данной цепи Маркова.

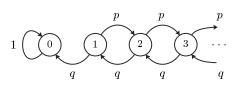


Рис. 5.5

Решение. Нетрудно видеть, что $E=E_0\cup E_1$, где $E_0=\{e_0\}$ является классом существенных состояний, а $E_1=\{e_1,e_2,e_3,\dots\}$ образует класс несущественных состояний. Поэтому цепь разложима и условие 1 теоремы 5.1 нарушается. Следовательно, дан-

ная ЦМ не имеет стационарного распределения. Из определения цепи ясно, что $p_{0,0}^{(n)}=1$ и $p_{m,j}^{(n)}\to 0,\ n\to\infty$ при любых $m\geqslant 0,\ j\geqslant 1.$ Таким образом, при любом $j\geqslant 1$ имеем $\pi_j=0.$ Обозначим через P_m вероятность того, что частица, выходящая из состояния $e_m=m,$ рано или поздно попадет в состояние $e_0=0.$ В силу того что состояние e_0

$$P_m = pP_{m+1} + qP_{m-1}, (5.14)$$

95

что следует из марковского свойства цепи и формулы полной вероятности. Кроме того, $P_0=1$ по условию. Обозначим $\alpha=q/p$, тогда общее решение уравнения (5.14) имеет вид $P_m=a+b\,\alpha^m$, а условие $P_0=1$ означает, что a+b=1.

Пусть q>p, т. е. $\alpha>1$. Тогда b=0 в силу ограничения $P_m\leqslant 1$. Но тогда a=1, т. е. $P_m=1$. Пусть теперь q< p, т. е. $\alpha<1$. Для вычисления P_m введем в произвольной точке N>m второй поглощающий барьер и обозначим $P_m(N)$ вероятность того, что блуждающая точка достигнет состояния e_0 раньше, чем состояния e_N . В следующем примере будет показано, что $\lim_{N\to\infty}P_m(N)=\alpha^m$. Докажем, что этот предел равен P_m . Действительно, пусть A— событие, состоящее в том, что найдется N, такое, что частица достигнет e_0 , выходя из e_m , раньше, чем e_N . Тогда $P_m=\mathbf{P}\{A\}$. Если $A_N=\{$ частица достигнет e_0 раньше, чем $e_N\}$, то $A=\bigcup_{N=m+1}^\infty A_N$, $A_N\subseteq A_{N+1}$. Очевидно, что

$$\mathbf{P}\{A\} = \mathbf{P}\Big\{\bigcup_{N=m+1}^{\infty} A_N\Big\} = \lim_{N \to \infty} \mathbf{P}\{A_N\} = \lim_{N \to \infty} P_m(N) = \alpha^m,$$

т. е.
$$P_m = \mathbf{P}\{A\} = \alpha^m$$
.

Наконец, если p=q, то оба решения совпадают, т. е. $P_m=1$. Итак, окончательно для финальной вероятности π_0 имеем: $\pi_0=1$, если $p\leqslant q$ и $\pi_0=(q/p)^m$, если p>q. Заметим, что при условии $p\leqslant q$ рассмотренная модель имеет предельное распределение вероятностей состояний $\pi^0=\{1,0,0,\dots\}$. Если же p>q, то набор финальных вероятностей $\pi^0=\{\alpha^m,0,0,\dots\}$ не является распределением вероятностей, так как условие нормировки не выполнено.

В заключение вычислим финальные вероятности состояний в цепи Маркова, описывающей игру двух лиц, которая рассмотрена в примере 5.5.

Пример 5.14. Найти финальные вероятности в игре двух лиц и, в частности, вероятность P_m разорения первого игрока, если начальные капиталы игроков конечны и равны m и M, а вероятности успеха в каждой игре равны p и q=1-p для первого и второго игроков соответственно.

Решение. В примере 5.5 показано, что математической моделью рассматриваемой игры является дискретная конечная ЦМ с множеством состояний $E=\{0,1,\ldots,L\}$, где L=m+M. Состояния $\{e_1,\ldots,e_{L-1}\}$ — несущественные, поэтому их финальные вероятности $\pi_k=0$. Пусть $\pi_0=P_m$ — финальная вероятность состояния e_0 ,

тогда (в силу конечности ЦМ) $\pi_L = 1 - P_m$. Найдем P_m из соотношения (5.14)

$$P_m = pP_{m+1} + qP_{m-1}, 1 \le m \le L - 1, (5.15)$$

с учетом краевых условий $P_0=1,\,P_L=0,\,$ которые следуют из условия окончания игры (разорение одного из игроков). Из общего соотношения (5.15) для $\alpha=q/p$ имеем

$$\begin{cases}
P_2 - P_1 = \alpha(P_1 - P_0), \\
P_3 - P_2 = \alpha^2(P_1 - P_0), \\
\dots \\
P_m - P_{m-1} = \alpha^{m-1}(P_1 - P_0).
\end{cases}$$

Складывая полученные выражения и учитывая, что $P_0=1$, находим $P_m=1+(P_1-1)S_m$, где $S_m=(1-\alpha^m)/(1-\alpha)$ при $\alpha\neq 1$ и $S_m=m$ при $\alpha=1$. Значение P_1 определяем из второго краевого условия $P_L=0$: $P_1=1-1/S_L$. Подставляя найденное P_1 в выражение для P_m , окончательно получаем с учетом L=m+M:

$$\begin{cases} P_{m} = \frac{(\alpha^{m} - \alpha^{m+M})}{(1 - \alpha^{m+M})} & \text{при} \quad \alpha \neq 1 \quad (p \neq q), \\ P_{m} = \frac{M}{(m+M)} & \text{при} \quad \alpha = 1 \quad (p = q = 1/2). \end{cases}$$
 (5.16)

Из (5.16) следует, что при $\alpha<1$, т. е. при p>q выполнено соотношение $\lim_{M\to\infty}P_m=\alpha^m$. Последний результат был использован в примере 5.13 для N=m+M, $P_m=P_m(N)$.

Заметим, что условие $M\to\infty$ фактически означает, что второй игрок располагает неограниченным исходным капиталом. В этом случае при $p\leqslant q$ имеем $P_m\to 1$ при $M\to\infty$, что означает неизбежное разорение первого игрока даже в безобидной игре (т. е. при p=q=1/2). Если же p>q, то $P_m\to\alpha^m<1$. Поэтому с вероятностью $Q_m=1-\alpha^m>0$ первый игрок может добиться неограниченного увеличения своего исходного капитала.

5.4. Задачи для самостоятельного решения.

1. Дискретная цепь с множеством состояний $E=\{0,1,\dots\}$ определена соотношением: $\xi_{n+1}=\xi_n+v_n,\ n\geqslant 0$, с начальным условием $\xi_0=0$, где $\{v_n\}$ — последовательность независимых случайных величин с распределением Бернулли. Доказать, что $\{\xi_n\}$ обладает марковским свойством, найти ее переходную матрицу и провести классификацию состояний.

Указание. См. пример 5.6.

2. Пусть случайные величины $\{v_0,v_1,\dots\}$ независимы в совокупности и каждая принимает значения +1 и -1 с вероятностями 1/2. Рассмотрим две последовательности: $\xi_n=(v_n+v_{n+1})/2$ и $\eta_n=v_nv_{n+1},\ n=0,1,\dots$ Какая из этих последовательностей является цепью Маркова?

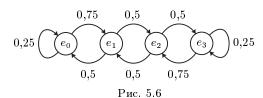
Ответ. Вторая.

3. Через фиксированные промежутки времени проводится контроль технического состояния прибора, который может находиться в одном из трех состояний: e_0 — работает, e_1 — не работает и ожидает ремонта, e_2 — ремонтируется. Пусть ξ_n — номер состояния прибора при n-й проверке. Предполагается, что $\{\xi_n\}$ является однородной ЦМ с переходной матрицей

$$P = \left[\begin{array}{ccc} 0.8 & 0.1 & p_{\,02} \\ 0.3 & p_{\,11} & 0.6 \\ p_{\,20} & 0.01 & 0.29 \end{array} \right].$$

Найти неизвестные элементы матрицы P и вычислить $\pi(2)$ при условии, что в начальный момент времени прибор исправен.

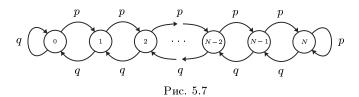
Ответ. $p_{02}=0.1; p_{11}=0.1; p_{20}=0.7; \pi(2)=\{0.74; 0.091; 0.169\}^*.$



4. Цепь Маркова задана стохастическим графом (рис. 5.6), где состояния e_0 и e_3 — отражающие барьеры. Найти стационарное распределение π , если оно существует.

Ответ. $\pi_0 = \pi_3 = 0.2; \ \pi_1 = \pi_2 = 0.3.$

5. Пусть конечная эргодическая ЦМ с $E=\{0,1,\ldots,N\}$ имеет дважды стохастическую матрицу перехода $P=\{p_{ij}\}$, т. е. $\sum_{j=0}^{N}p_{ij}=\sum_{i=0}^{N}p_{ij}=1$ для всех $i,j\in E$. Показать, что стационарное распределение существует и является равномерным на E.



6. ЦМ имеет множество допустимых состояний $E=\{0,1,\ldots,N\}$ и описывается стохастическим графом (рис. 5.7), где $0< p<1,\ q=1-p$. Доказать, что цепь является эргодической, и найти стационарное распределение вероятностей состояний $\{\pi_k\}$.

7 Б.М. Миллер и А.Р. Панков

Ответ. Если $p\neq q$, то $\pi_k=rac{a^k\,(1-a)}{1-a^{N+1}},\,k=0,1,\ldots,N,$ где a=p/q; если p=q, то $\pi_0=\pi_1=\ldots=\pi_N=1/(N+1).$

7. Эргодическая ЦМ с двумя состояниями имеет стационарное распределение $\pi_0=p,\,\pi_1=q=1-p$. Найти переходную матрицу.

деление
$$\pi_0 = p, \; \pi_1 = q = 1 - p.$$
 Найти переходную матрицу.
 Ответ. $P = \begin{pmatrix} x & 1 - x \\ y & 1 - y \end{pmatrix}$, где для $a = p/q > 1 \quad x \in \left(\frac{a-1}{a}, 1\right)$, а для $a < 1 \quad x \in (0,1)$ и $y = a(1-x)$.

- 8. Пусть конечная ЦМ неразложима и апериодична, а τ случайное время первого возвращения в любое фиксированное состояние. Доказать, что найдутся c>0 и q<1, такие, что $\mathbf{P}\{\tau>n\}< cq^n$.
- 9. Частица, находящаяся на плоскости в точке с целыми координатами (m,n), может с вероятностью 1/4 переместиться в любую из четырех точек с координатами $(m\pm 1,n\pm 1)$. Доказать, что все состояния двумерной ЦМ, описывающей процесс блуждания, возвратны.

§ 6. Разностные стохастические уравнения

6.1. Модели авторегрессии и скользящего среднего. Пусть $\varepsilon = \{\varepsilon_n, n \in \mathbb{Z}\}$ — последовательность независимых случайных величин с характеристиками $m_{\varepsilon}(n) = \mathbf{M}\{\varepsilon_n\}$ и $D_{\varepsilon}(n) = \mathbf{M}\{|\varepsilon_n - m_{\varepsilon}(n)|^2\}$. Далее ε называется дискретным белым шумом.

Замечание. В примере 3.3 мы рассматривали стационарный дискретный белый шум. Определенный выше дискретный белый шум будет стационарным, если $m_{\varepsilon}(n)=m_{\varepsilon}=\mathrm{const},\ D_{\varepsilon}(n)=D_{\varepsilon}=\mathrm{const}.$ При этом некоррелированность сечений следует из их независимости. Кроме того, в данном параграфе мы будем рассматривать только вещественные СП.

О пределение 6.1. Случайная последовательность $\{\xi_n\}$ называется авторегрессионной последовательностью (АР-последовательностью) порядка $p \geqslant 1$, если она удовлетворяет уравнению

$$\xi_n + \sum_{k=1}^p b_k \xi_{n-k} = \varepsilon_n, \quad n \in \mathbb{Z}, \tag{6.1}$$

где $\{b_1, \ldots, b_p\}$ — числовые параметры, а $p \geqslant 1$ — порядок модели авторегрессии (АР-модели) (6.1).

Алгебраическое уравнение

$$x^{p} + \sum_{k=1}^{p} b_{k} x^{p-k} = 0 {(6.2)}$$

называется характеристическим уравнением АР-модели (6.1).

Определение 6.2. АР-модель (6.1) называется асимптотически устойчивой, если все решения $\{x_i\}$ характеристического уравнения удовлетворяют условию $|x_i| < 1$.

Определение 6.3. Случайная последовательность $\{\eta_n\}$ называется последовательностью скользящего среднего (СС-последователь*ностью*) порядка $q \geqslant 1$, если

$$\eta_n = a_0 \varepsilon_n + \sum_{k=1}^q a_k \varepsilon_{n-k}, \quad n \in \mathbb{Z},$$
(6.3)

где $\{a_0,a_1,\ldots,a_q\},\,q$ — параметры СС-модели (6.3). Если все решения $\{z_i\}$ характеристического уравнения СС-модели

$$a_0 z^q + \sum_{k=1}^q a_k z^{q-k} = 0$$

удовлетворяют условию $|z_i| < 1$, то модель (6.3) называется минимально-фазовой.

Очевидно, что модели (6.1), (6.3) можно объединить в одну комбинированную модель.

Определение 6.4. Случайная последовательность $\{\xi_n\}$ называется последовательностью авторегрессии-скользящего среднего (или APCC-последовательностью) порядка (p,q), если она удовлетворяет разностному стохастическому уравнению

$$\xi_n + \sum_{k=1}^p b_k \xi_{n-k} = a_0 \varepsilon_n + \sum_{j=1}^q a_j \varepsilon_{n-j}, \quad n \in \mathbb{Z}.$$
 (6.4)

Числа $\{b_k\}_{k=1}^p,\ \{a_j\}_{j=0}^q$ являются параметрами АРСС-модели, p — порядок авторегрессии, а q — порядок скользящего среднего.

Замечание. Из приведенных определений следует, что если $\{\varepsilon_n\}$ — гауссовский белый шум, то APCC-последовательность $\{\xi_n\}$ также является гауссовской.

Пример 6.1. Пусть в асимптотически устойчивой АР-модели порядка p=1 белый шум $\{\varepsilon_n\}$ является стационарным. Найти математическое ожидание и дисперсию AP-последовательности $\{\xi_n\}$ и доказать ее стационарность.

Pе шение. По условию $\{\xi_n\}$ удовлетворяет уравнению

$$\xi_n + b\xi_{n-1} = \varepsilon_n, \quad n \in \mathbb{Z}.$$
 (6.5)

Характеристическое уравнение модели (6.5) имеет вид x + b = 0, и, следовательно, $|x_1| = |b| < 1$ — условие асимптотической устойчивости. Используя прием, описанный в примере 4.5, нетрудно показать

$$\xi_n = \sum_{k=0}^{\infty} \beta^k \varepsilon_{n-k},\tag{6.6}$$

где $\beta=-b$, причем ряд (6.6) сходится в среднеквадратическом смысле в силу $|\beta|<1$. Итак, ξ_n является линейным преобразованием белого шума $\{\varepsilon_n\}$. Обозначим $m_{\varepsilon}=\mathbf{M}\{\varepsilon_n\}$ и $D_{\varepsilon}=\mathbf{D}\{\varepsilon_n\}$, тогда

$$m_{\xi}(n) = \mathbf{M}\{\xi_n\} = \sum_{k=0}^{\infty} \beta^k \mathbf{M}\{\varepsilon_{n-k}\} = m_{\varepsilon} \sum_{k=0}^{\infty} \beta^k = \frac{m_{\varepsilon}}{1+b},$$

$$D_{\xi}(n) = \mathbf{D}\{\xi_n\} = \sum_{k=0}^{\infty} (\beta^k)^2 \mathbf{D}\{\varepsilon_{n-k}\} = D_{\varepsilon} \sum_{k=0}^{\infty} (\beta^k)^2 = \frac{D_{\varepsilon}}{1 - b^2}.$$

Для доказательства стационарности $\{\xi_n\}$ остается вычислить ковариационную последовательность

$$\begin{aligned} \mathbf{cov}\{\xi_n, \xi_m\} &= \sum_{k,j=0}^{\infty} \beta^k \beta^j \mathbf{cov}\{\varepsilon_{n-k}, \varepsilon_{m-j}\} = \\ &= \beta^{|n-m|} D_{\varepsilon} \sum_{k=0}^{\infty} (b^2)^k = \beta^{|n-m|} D_{\xi} = R_{\xi}(n-m). \end{aligned}$$

Здесь мы воспользовались тем, что $\mathbf{cov}\{\varepsilon_{n-k},\varepsilon_{m-j}\}=D_{\varepsilon}$, если n-k=m-j и $\mathbf{cov}\{\varepsilon_{n-k},\varepsilon_{m-j}\}=0$ при $n-k\neq m-j$. Итак, СП $\{\xi_n\}$ имеет постоянные математическое ожидание и дисперсию, а ковариация сечений ξ_n и ξ_m зависит только от разности n-m, т. е. $\{\xi_n\}$ является стационарной в широком смысле СП с характеристиками $m_{\xi}=\frac{m_{\varepsilon}}{1+b},\, D_{\xi}=\frac{D_{\varepsilon}}{1-b^2},\, R_{\xi}(k)=(-b)^{|k|}D_{\xi}.$

Аналогичная ситуация имеет место и для асимптотически устойчивой AP-модели произвольного порядка $p\geqslant 1$.

Теорем а 6.1. Пусть $\{\xi_n\}$ удовлетворяет уравнению (6.1), описывающему асимптотически устойчивую AP-модель порядка $p\geqslant 1$, где $\{\varepsilon_n\}$ — стационарный белый шум, тогда

$$\xi_n = \sum_{k=0}^{\infty} \alpha_k \varepsilon_{n-k},$$

где коэффициенты $\{\alpha_k\}$ удовлетворяют условию $\sum\limits_{k=1}^{\infty}|\alpha_k|<\infty$ и вычисляются по рекуррентным формулам

$$\begin{cases} \alpha_{k+1}\beta_{k,1} = 0, \\ \beta_{k+1,j} = \beta_{k,j+1} - \beta_{k,1}b_j, \quad j = 1, 2, \dots, p-1, \\ \beta_{k+1,p} = -\beta_{k,1}b_p, \quad k = 0, 1, \dots, \end{cases}$$

с начальными условиями $\alpha_0=1,\ \beta_{0,j}=b_j,\ j=1,2,\ldots,p$. При этом СП $\{\xi_n\}$ является стационарной и имеет характеристики

$$m_{\xi} = m_{\varepsilon} \sum_{k=0}^{\infty} \alpha_k, \qquad D_{\xi} = D_{\varepsilon} \sum_{k=0}^{\infty} \alpha_k^2,$$

$$R_{\xi}(m) = D_{\xi} \sum_{k=0}^{\infty} \alpha_k \alpha_{k+|m|}, \quad m \in \mathbb{Z}.$$

В примере 3.4 рассматривалась модель бесконечного скользящего среднего. Рассмотрим теперь модель скользящего среднего (6.3) конечного порядка.

Пример 6.2. СС-последовательность $\{\eta_n\}$ удовлетворяет (6.3), где $\{\varepsilon_n\}$ — стационарный белый шум. Найти математическое ожидание, дисперсию и ковариационную функцию СП $\{\eta_n\}$.

Решение. По определению $\eta_n = \sum_{k=0}^q a_k \varepsilon_{n-k}$, где $\mathbf{M}\{\varepsilon_k\} = m_\varepsilon =$ = const, $\mathbf{D}\{\varepsilon_k\} = D_\varepsilon = \mathrm{const}$, $\mathbf{cov}\{\varepsilon_k, \varepsilon_j\} = 0$ при $k \neq j$. Отсюда

$$\mathbf{M}\{\eta_n\} = \mathbf{M}\left\{\sum_{k=0}^q a_k \varepsilon_{n-k}\right\} = m_{\varepsilon} \sum_{k=0}^q a_k = \text{const},$$

$$\mathbf{D}\{\eta_n\} = \sum_{k,l=0}^q a_k a_l \operatorname{cov}\{\varepsilon_{n-k}, \varepsilon_{n-l}\} = D_{\varepsilon} \sum_{k=0}^q a_k^2,$$

$$\mathbf{cov}\{\eta_n,\eta_m\} = \sum_{k,l=0}^q a_k a_l \, \mathbf{cov}\{\varepsilon_{n-k},\varepsilon_{m-l}\} = D_{\varepsilon} \sum_{k=0}^{q-|n-m|} a_k a_{k+|n-m|}$$
 при $|n-m|\leqslant q$ и $\mathbf{cov}\{\eta_n,\eta_m\}=0$ при $|n-m|>q$. Отсюда

$$R_{\xi}(m) = \left\{ \begin{array}{ll} D_{\varepsilon} \sum_{k=0}^{q-|m|} a_k a_{k+|m|} & \text{при} \quad |m| \leqslant q, \\ 0 & \text{при} \quad |m| > q. \end{array} \right.$$

Последнее означает, что любые сечения СС-последовательности, отстоящие друг от друга более чем на q шагов, являются некоррелированными. Этим СС-последовательность существенно отличается от AP-последовательности, так как у последней сколь угодно далеко отстоящие друг от друга сечения в общем случае являются коррелированными. \blacksquare

Пример 6.3. Доказать, что AP-последовательность первого порядка обладает марковским свойством.

Решение. Пусть известно, что для некоторого $m\geqslant 0$ и набора целых чисел $n_0<\ldots< n_m=n-1$ выполнено $\xi_{n_0}=x_0,\,\xi_{n_1}=x_1,\,\ldots,\,\xi_{n_m}=x_m$. Вычислим $\mathbf{P}\{\xi_n\in B\mid \xi_{n_m}=x_m,\,\ldots,\xi_{n_0}=x_0\},\,$ где B—произвольное борелевское множество на прямой.

По условию
$$\xi_n + b\xi_{n-1} = \varepsilon_n$$
, причем $\xi_{n-m} = \sum_{k=0}^{\infty} (-b)^k \varepsilon_{n-m-k}$,

поэтому ε_n и ξ_{n-m} независимы при всех $m\geqslant 1$ в силу того, что $\{\varepsilon_n\}$ — белый шум с независимыми сечениями. Тогда

$$\begin{split} \mathbf{P}\{\xi_n \in B \mid \xi_{n_m} = x_m, \, \dots, \xi_{n_0} = x_0\} = \\ &= \mathbf{P}\{-b\xi_{n-1} + \varepsilon_n \in B \mid \xi_{n_m} = x_m, \, \dots, \xi_{n_0} = x_0\} = \mathbf{P}\{\varepsilon_n - bx_m \in B\}. \end{split}$$
 С другой стороны,

$$\mathbf{P}\{\xi_n \in B \mid \xi_{n_m} = x_m\} = \mathbf{P}\{\varepsilon_n - bx_m \in B\},\,$$

откуда
$$\mathbf{P}\{\xi_n\in B\mid \xi_{n_m}=x_m,\,\ldots,\xi_{n_0}=x_0\}=\mathbf{P}\{\xi_n\in B\mid \xi_{n_m}=x_m\}$$
. Совершенно аналогично рассматривается случай произвольного

Совершенно аналогично рассматривается случай произвольного $n_m < n$. В силу произвольности выбора $m, \{n_k\}$ и B доказанное означает, что $\{\xi_n\}$ — марковская последовательность. Подчеркнем, что доказанное утверждение справедливо для случая, когда $\{\varepsilon_n\}$ — белый шум с независимыми сечениями. Если же сечения являются лишь некоррелированными, то марковское свойство может нарушаться. Однако если $\{\varepsilon_n\}$ — гауссовский белый шум, то марковское свойство следует из результатов примера 2.12. \blacksquare

Обычно в практических задачах всякий процесс имеет «начало», т. е. $\{\xi_n\}$ задан лишь при $n\geqslant 0$. Если при $n\geqslant 1$ ξ_n удовлетворяет уравнению авторегрессии порядка p, а значения $\xi_0=\zeta_1,\ldots,\xi_{-p+1}=\zeta_p$ заданные случайные величины (начальные условия), то свойства СП $\{\xi_n\}$ несколько отличаются от свойств AP-последовательности.

 Π ример 6.4. Найти математическое ожидание и дисперсию последовательности $\{\xi_n\}$, удовлетворяющей уравнению

$$\xi_n = \alpha \xi_{n-1} + \varepsilon_n, \quad n \geqslant 1, \qquad \xi_0 = \eta,$$
 (6.7)

где $|\alpha|<1,\ \eta$ — случайная величина с $\mathbf{M}\!\left\{\eta^2\right\}<\infty,$ не зависящая от стационарного белого шума $\{\varepsilon_n\}.$

Решение. Найдем представление ξ_n через $\{\varepsilon_n\}$ и η :

$$\xi_n = \varepsilon_n + \alpha \varepsilon_{n-1} + \alpha^2 \xi_{n-2} = \dots = \sum_{k=0}^{n-1} \alpha^k \varepsilon_{n-k} + \alpha^n \eta,$$

$$m_{\xi}(n) = \mathbf{M}\{\xi_n\} = m_{\varepsilon} \sum_{k=0}^{n-1} \alpha^k + \alpha^n m_{\eta} = m_{\varepsilon} \frac{1-\alpha^n}{1-\alpha} + \alpha^n m_{\eta}.$$

$$D_{\xi}(n) = \mathbf{D}\{\xi_n\} = \mathbf{D}\left\{\sum_{k=0}^{n-1} \alpha^k \varepsilon_{n-k}\right\} + \mathbf{D}\{\alpha^n \eta\} = D_{\varepsilon} \frac{1 - \alpha^{2n}}{1 - \alpha^2} + \alpha^{2n} D_{\eta}.$$

Подчеркнем, что СП $\{\xi_n\}$ нестационарна, так как $m_\xi(n)$ и $D_\xi(n)$ зависят явно от n. В силу условия $\mathbf{M}\{\eta^2\}<\infty$ имеем $|m_\eta|<\infty$ и $D_\eta<\infty$, поэтому с учетом $|\alpha|<1$ получаем

$$m_{\xi}(n) o rac{m_{arepsilon}}{1-lpha}, \quad D_{\xi}(n) o rac{D_{arepsilon}}{1-lpha^2} \quad ext{при} \quad n o \infty.$$

Таким образом, предельные значения среднего и дисперсии для СП $\{\xi_n\}$ такие же, как и для стационарной AP-последовательности порядка p=1, удовлетворяющей (6.7) при всех $n\in\mathbb{Z}$.

Замечание. Можно показать, что вывод о совпадении предельных характеристик последовательности $\{\xi_n\}$, удовлетворяющей уравнению авторегрессии порядка p>1 с заданными начальными значениями, и характеристик соответствующей AP-последовательности остается в силе, если AP-модель асимптотически устойчива.

6.2. Спектральные характеристики APCC-последовательностей. Из теоремы 6.1 следует, что APCC-последовательность $\{\xi_n\}$ является результатом стационарного линейного преобразования стационарного белого шума $\{\varepsilon_n\}$. Поэтому спектральная плотность $f_{\xi}(\lambda)$ последовательности $\{\xi_n\}$ может быть вычислена с использованием результатов п. 4.2.

Пример 6.5. Пусть $\{\xi_n\}$ — АРСС-последовательность, определяемая разностным стохастическим уравнением

$$\xi_n + \sum_{k=1}^p b_k \xi_{n-k} = \sum_{j=0}^q a_j \varepsilon_{n-j}, \quad n \in \mathbb{Z},$$

$$(6.8)$$

где $\{\varepsilon_n\}$ — центрированный стационарный белый шум с дисперсией $D_{\varepsilon}>0$. Найти спектральную плотность $f_{\xi}(\lambda)$.

Решение. Найдем частотную характеристику $\Phi(\lambda)$ линейного преобразования (6.8). Для этого предположим, что $\varepsilon_n = e^{i\lambda n}$. Тогда из (4.17) следует, что $\xi_n = \Phi(\lambda)e^{i\lambda n}$. Подставим соответствующие ε_n и ξ_n в уравнение (6.8), тогда

$$\Phi(\lambda) \left[e^{i\lambda n} + \sum_{k=0}^{p} b_k e^{i\lambda(n-k)} \right] = \sum_{j=0}^{q} a_j e^{i\lambda(n-j)}.$$
 (6.9)

После деления обеих частей равенства (6.9) на $e^{i\lambda n}$ получаем

$$\Phi(\lambda) = \frac{\sum\limits_{j=0}^{q} a_j e^{-i\lambda j}}{1 + \sum\limits_{k=1}^{p} b_k e^{-i\lambda k}} = \frac{F(e^{-i\lambda})}{H(e^{-i\lambda})},$$

где $F(x) = a_0 + a_1 x + \ldots + a_q x^q$ и $H(x) = 1 + b_1 x + \ldots + b_p x^p$.

Заметим, что условие асимптотической устойчивости модели (6.8) означает, что все корни характеристического многочлена $\widetilde{H}(x)=x^pH(x^{-1})$ по модулю меньше единицы. Тогда выполнено условие (3.25) интегрируемости квадрата модуля частотной характеристики $\Phi(\lambda)$, поскольку

$$|\Phi(\lambda)|^2 = \Phi(\lambda)\overline{\Phi(\lambda)} = \frac{F(e^{-i\lambda})}{H(e^{-i\lambda})} \cdot \frac{F(e^{i\lambda})}{H(e^{i\lambda})} = \left|\frac{F(e^{-i\lambda})}{H(e^{-i\lambda})}\right|^2.$$

Наконец, $f_{\varepsilon}(\lambda) = \frac{D_{\varepsilon}}{2\pi}$ — спектральная плотность белого шума $\{\varepsilon_n\}$. Теперь, используя соотношение (4.18), получаем

$$f_{\xi}(\lambda) = \frac{D_{\varepsilon} \left| \sum_{j=0}^{q} a_{j} e^{-i\lambda j} \right|^{2}}{2\pi \left| 1 + \sum_{k=1}^{p} b_{k} e^{-i\lambda k} \right|^{2}}.$$
 (6.10)

Из (6.10) следует, что спектральная плотность АРСС-последовательности порядка (p,q) является дробно-рациональной функцией переменной $e^{-i\lambda}$.

Формула (6.10) позволяет явно вычислить дисперсию АРСС-последовательности для произвольных порядков p и q.

 Π р и м е р 6.6. С Π $\{\xi_n\}$ удовлетворяет уравнению

$$\xi_n - 0.5 \,\xi_{n-1} + 0.25 \,\xi_{n-2} = \varepsilon_n, \tag{6.11}$$

где $\{\varepsilon_n\}$ — центрированный стационарный белый шум с дисперсией $D_\varepsilon=1$. Вычислить дисперсию D_ξ СП $\{\xi_n\}$.

Решение. Убедимся, что модель (6.11) асимптотически устойчива. Характеристическое уравнение модели имеет вид

$$x^2 - 0.5 x + 0.25 = 0. (6.12)$$

Найдем корни уравнения (6.12): $x_{1,2}=0.25~(1\pm i\sqrt{3}),$ поэтому $|x_{1,2}|=0.5<1,$ т. е. условие асимптотической устойчивости выполнено. Теперь из (6.10) следует, что

$$f_{\xi}(\lambda) = \frac{1}{2\pi |H(e^{-i\lambda})|^2},$$
 где $H(x) = 1 - 0.5 x + 0.25 x^2$.

Дисперсия D_{ξ} может быть найдена по формуле (3.13):

$$D_{\xi} = \int_{-\pi}^{\pi} f_{\xi}(\lambda) d\lambda = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{d\lambda}{|H(e^{-i\lambda})|^2} = I_2.$$
 (6.13)

Для аналитического вычисления интеграла (6.13) воспользуемся алгоритмом, изложенным в п. 15.2.

Пусть $\gamma=0.5$, тогда $b_0=1$, $b_1=-\gamma$, $b_2=\gamma^2$, $a_0=1$, $a_1=0$, $a_2=0$, p=2. Для вычисления интеграла I_2 воспользуемся рекуррентными формулами (15.9) с начальными условиями (15.10). В условиях данного примера получаем: $\alpha_2^2=\alpha_1^1=0$, $\alpha_0^0=1$; $\beta_0^2=1$, $\beta_0^1=1-\gamma^4$,

$$eta_0^0 = rac{1-\gamma^6}{1+\gamma^2}$$
. Отсюда по формуле (15.8) $I_2 = rac{1}{eta_0^2} \sum_{k=0}^2 rac{(lpha_k^k)^2}{eta_0^k} = rac{1}{eta_0^0} =$

$$=rac{1+\gamma^2}{1-\gamma^6}$$
. Подставляя $\gamma=0.5$, находим $D_{\xi}=I_2pprox 1.27$.

Заметим, что мы получили несколько более общий результат: если $\{\xi_n\}$ удовлетворяет уравнению AP-модели вида

$$\xi_n - \gamma \xi_{n-1} + \gamma^2 \xi_{n-2} = \varepsilon_n, \quad |\gamma| < 1,$$

то
$$\mathbf{D}\{\xi_n\}=D_{\varepsilon}\frac{1+\gamma^2}{1-\gamma^6},$$
 где $D_{\varepsilon}=\mathbf{D}\{\varepsilon_n\}.$

Применительно к практическим приложениям для описания СП $\{\xi_n\}$ удобно использовать параметрическую APCC-модель вида (6.1), обеспечивающую требуемый вид спектральной плотности $\{\xi_n\}$. Из примера 6.1 следует, что в случае, когда $f_{\xi}(\lambda)$ имеет вид (6.10), а $\{\varepsilon_n\}$ — гауссовский стационарный белый шум с дисперсией D_{ε} , $\{\xi_n\}$ является гауссовской СП, удовлетворяющей уравнению APCC. Соответствующая APCC-модель называется формирующим фильтром для СП $\{\xi_n\}$, построенным по заданной дробно-рациональной спектральной плотности.

Пример 6.7. Построить формирующий фильтр для гауссовской центрированной случайной последовательности $\{\xi_n\}$ со спектральной плотностью $f_\xi(\lambda)=\frac{1,49+1,4\cos\lambda}{2\pi(1,16-0,8\cos\lambda)}.$

Решение. Произведем факторизацию спектральной плотности:

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \cdot \frac{(1+0.7 e^{-i\lambda})(1+0.7 e^{i\lambda})}{(1-0.4 e^{-i\lambda})(1-0.4 e^{i\lambda})} = \frac{1}{2\pi} \cdot \frac{F(e^{-i\lambda})F(e^{i\lambda})}{H(e^{-i\lambda})H(e^{i\lambda})},$$

где
$$F(x) = 1 + 0.7 x$$
, $H(x) = 1 - 0.4 x$. Поэтому, $f_{\xi}(\lambda) = |\Phi(\lambda)|^2 f_{\varepsilon}(\lambda)$, где $\Phi(\lambda) = \frac{F(e^{-i\lambda})}{H(e^{-i\lambda})}$, а $f_{\varepsilon}(\lambda) = \frac{1}{2\pi}$.

Так как корень многочлена H(x) по модулю больше единицы, то $\Phi(\lambda)$ является частотной характеристикой асимптотически устойчивой АРСС-модели

$$\xi_n - 0.4 \, \xi_{n-1} = \varepsilon_n + 0.7 \, \varepsilon_{n-1}, \quad n \in \mathbb{Z}. \tag{6.14}$$

Уравнение (6.14) задает искомый формирующий фильтр для СП $\{\xi_n\}$, где $\{\varepsilon_n\}$ — гауссовский стационарный белый шум с дисперсией $D_{\varepsilon}=1$.

Уравнение (6.14) позволяет провести компьютерное моделирование последовательности $\{\xi_n\}$, имеющей спектральную плотность требуемого вида.

Рассмотренный алгоритм можно использовать для приближенного моделирования СП, спектральная плотность которой не является дробно-рациональной. Для этого обычно предварительно аппроксимируют заданную спектральную плотность подходящей дробнорациональной плотностью (для этого можно применить, например, метод наименьших квадратов), после чего строят соответствующий формирующий фильтр в виде АРСС-модели.

6.3. Многомерные разностные линейные стохастические уравнения. Пусть $\{\xi_n\}$ — многомерная СП, т. е. $\xi_n \in \mathbb{R}^p$ при каждом $n \geqslant 0$, а $\{\varepsilon_n\}$ — многомерный дискретный белый шум. Последнее означает, что $\{\varepsilon_n\}$ — последовательность независимых СВ $\varepsilon_n \in \mathbb{R}^q$. Будем далее считать, что $\mathbf{M}\{\varepsilon_n\} = m_\varepsilon(n), \mathbf{cov}\{\varepsilon_n, \varepsilon_n\} = \mathbf{M}\{(\varepsilon_n - m_\varepsilon(n))(\varepsilon_n - m_\varepsilon(n))^*\} = D_\varepsilon(n)$. Матричная функция $D_\varepsilon(n)$ называется дисперсионной функцией (при q=1 $D_\varepsilon(n)$ — дисперсия СП $\{\varepsilon_n\}$). По-прежнему q-мерный белый шум $\{\varepsilon_n\}$ будем называть ε стационарным, если $m_\varepsilon(n) \equiv m_\varepsilon$, $D_\varepsilon(n) \equiv D_\varepsilon$. Если же $m_\varepsilon = 0$ и $D_\varepsilon = I$, то $\{\varepsilon_n\}$ — ε стандартный ε смерный белый шум.

Определение 6.5. Случайная последовательность $\{\xi_n, n \geq 0\}$ удовлетворяет многомерному линейному разностному стохастическому уравнению с начальным условием η , если

$$\begin{cases}
\xi_n = A_n \xi_{n-1} + B_n \varepsilon_n, & n \geqslant 1, \\
\xi_0 = \eta,
\end{cases} (6.15)$$

где $\eta \in \mathbb{R}^p$ — случайный вектор начальных условий, не зависящий от $\{\varepsilon_n\},\ A_n \in \mathbb{R}^{p \times p},\ B_n \in \mathbb{R}^{p \times q}$ — известные неслучайные матрицы.

Определение 6.6. Уравнение (6.15) называется *стационарным* асимптотически устойчивым, если $A_n = A$, $B_n = B$ при всех $n \geqslant 1$, матрица A такова, что все корни алгебраического уравнения (относительно $x \in \mathbb{C}$)

$$\det[A - xI] = 0 \tag{6.16}$$

по модулю меньше единицы, а $\{\varepsilon_n\}$ — стационарный дискретный белый шум.

Рекуррентные соотношения (6.15) позволяют провести моделирование СП $\{\xi_n\}$, а также вычислить моментные характеристики $m_{\xi}(n) = \mathbf{M}\{\xi_n\}$ и $D_{\xi}(n) = \mathbf{cov}\{\xi_n, \xi_n\}$ при заданных характеристиках $\{\varepsilon_n\}$ и начального условия η .

Пример 6.8. Доказать, что если СП $\{\xi_n\}$ удовлетворяет уравнению (6.15), то функции $m_{\xi}(n)$ и $D_{\xi}(n)$ удовлетворяют рекуррентным

уравнениям

$$\begin{cases}
 m_{\xi}(n) = A_n m_{\xi}(n-1) + B_n m_{\varepsilon}(n), & n \geqslant 1, \\
 m_{\xi}(0) = m_{\eta},
\end{cases}$$
(6.17)

$$\begin{cases}
D_{\xi}(n) = A_n D_{\xi}(n-1) A_n^* + B_n D_{\varepsilon}(n) B_n^*, & n \geqslant 1, \\
D_{\xi}(0) = R_{\eta},
\end{cases} (6.18)$$

где $m_{\eta} = \mathbf{M}\{\eta\}, R_{\eta} = \mathbf{cov}\{\eta, \eta\}.$

Решение. Применим к обеим частям уравнения (6.15) оператор математического ожидания:

$$m_{\xi}(n) = \mathbf{M}\{\xi_n\} = \mathbf{M}\{A_n\xi_{n-1} + B_n\varepsilon_n\} =$$

$$= A_n \mathbf{M} \{ \xi_{n-1} \} + B_n \mathbf{M} \{ \varepsilon_n \} = A_n m_{\xi} (n-1) + B_n m_{\varepsilon} (n).$$

Аналогично, $m_{\xi}(0) = \mathbf{M}\{\xi_0\} = \mathbf{M}\{\eta\} = m_{\eta}$. Итак, мы показали справедливость (6.17).

Заметим, что $D_{\xi}(0) = \mathbf{cov}\{\xi_0, \xi_0\} = R_n$. Пусть теперь $n \geqslant 1$, тогда

$$D_{\xi}(n) = \mathbf{cov}\{\xi_n, \xi_n\} = \mathbf{cov}\{A_n\xi_{n-1} + B_n\varepsilon_n, A_n\xi_{n-1} + B_n\varepsilon_n\} =$$

$$=A_{n}\operatorname{cov}\{\xi_{n-1},\xi_{n-1}\}\,A_{n}^{*}+A_{n}\operatorname{cov}\{\xi_{n-1},\varepsilon_{n}\}\,B_{n}^{*}+B_{n}\operatorname{cov}\{\varepsilon_{n},\xi_{n-1}\}\,A_{n}^{*}+B_{n}\operatorname{cov}\{\varepsilon_{n},\xi_{n}\}\,A_{n}^{*$$

$$+ B_n \operatorname{cov} \{\varepsilon_n, \varepsilon_n\} B_n^* = A_n D_{\xi}(n-1) A_n^* + B_n D_{\varepsilon}(n) B_n^*,$$

где учтено, что при всяком $n\geqslant 1$ случайные векторы ε_n и ξ_{n-1} независимы в силу того, что ξ_{n-1} линейно выражается через вектора $\{\eta,\varepsilon_1,\ldots,\varepsilon_{n-1}\}$, которые не зависят от ε_n по условию. Последнее означает, что $\mathbf{cov}\{\xi_{n-1},\varepsilon_n\}=0$. Полученные соотношения для $D_\xi(0)$ и $D_\xi(n),\,n\geqslant 1$ совпадают с (6.18).

Уравнения (6.17), (6.18), позволяющие вычислить моментные характеристики первого и второго порядков СП $\{\xi_n\}$, называются уравнениями метода моментов.

Рассмотрим поведение $m_{\xi}(n)$ и $D_{\xi}(n)$ при $n \to \infty$ в случае, когда система (6.15) является стационарной асимптотически устойчивой. Можно доказать, что существуют постоянные вектор m_{ξ} и матрица D_{ξ} , такие, что $m_{\xi}(n) \to m_{\xi}$ и $D_{\xi}(n) \to D_{\xi}$ при $n \to \infty$, причем пределы m_{ξ} и D_{ξ} не зависят от m_{η} и R_{η} .

 Π р и м е р 6.9. Найти уравнения для предельных значений среднего $m_{\mathcal{E}}$ и дисперсии $D_{\mathcal{E}}$.

Решение. Если (6.15) стационарна и асимптотически устойчива, то соответствующие уравнения метода моментов принимают cmauuo-naphui вид

$$\begin{cases}
 m_{\xi}(n) = Am_{\xi}(n-1) + Bm_{\varepsilon}, \\
 D_{\xi}(n) = AD_{\xi}(n-1)A^* + BD_{\varepsilon}B^*.
\end{cases}$$
(6.19)

Очевидно, что если $m_{\xi}(n) \to m_{\xi}$ и $D_{\xi}(n) \to D_{\xi}$ при $n \to \infty$, то, переходя к пределу в уравнениях (6.19), получаем

$$\begin{cases}
 m_{\xi} = Am_{\xi} + Bm_{\varepsilon}, \\
 D_{\xi} = AD_{\xi}A^* + BD_{\varepsilon}B^*.
\end{cases} (6.20)$$

Уравнения (6.20) являются линейными алгебраическими уравнениями, определяющими искомые величины m_{ξ} и D_{ξ} . Можно показать, что в силу устойчивости матрицы A (см. определение 6.6) система (6.20) имеет единственное решение. Например, $m_{\xi} = (I-A)^{-1}Bm_{\varepsilon}$, причем матрица (I-A) обратима в силу того, что все собственные значения матрицы A по модулю меньше единицы.

Оказывается, что рассмотренная выше APCC-модель (6.4) является частным случаем векторной стационарной модели (6.15). Действительно, пусть APCC-последовательность $\{\xi_n\}$ определена уравнением

$$\xi_n + b_1 \xi_{n-1} + \ldots + b_p \xi_{n-p} = a_0 \varepsilon_n + a_1 \varepsilon_{n-1} + \ldots + a_q \varepsilon_{n-q}, \tag{6.21}$$

где $b_p \neq 0$, q=p-1, а $p\geqslant 1$ — порядок авторегрессионной части модели (6.21). Тогда $\xi_n=\xi_1(n)$, где $\xi_1(n)$ — первая компонента p-мерной случайной последовательности $\xi(n)=\{\xi_1(n),\ldots,\xi_p(n)\}^*$, удовлетворяющей векторному разностному стохастическому уравнению

$$\xi(n) = A\xi(n-1) + B\varepsilon_n, \tag{6.22}$$

где

$$A = \begin{bmatrix} -b_1 & -b_2 & \dots & -b_{p-1} & -b_p \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} a_0 \\ d_q \\ d_{q-1} \\ \dots \\ d_1 \end{bmatrix}, \quad (6.23)$$

а параметры $\{d_k, k=1,\ldots,q\}$ вычисляются по рекуррентным формулам:

$$d_q = \widetilde{a}_q, \quad d_k = \widetilde{a}_k - \sum_{i=k}^{q-1} \widetilde{b}_{i+1} d_{k+q-i}, \quad k = q-1, \dots, 1,$$
 (6.24)

где обозначено $\widetilde{a}_k = -a_k/b_p, \, k = 1, \ldots, q, \, \widetilde{b}_i = b_i/b_p, \, i = 2, \ldots, p.$

Можно также показать, что если APCC-модель (6.21) является асимптотически устойчивой, то соответствующее векторное уравнение (6.22) также является асимптотически устойчивым в смысле определения 6.6.

Заметим, что (6.22) является уравнением авторегрессии первого порядка для p-мерной СП $\{\xi(n)\}$. Таким образом, приведенные соотношения фактически показывают, что скалярная APCC-модель p-го порядка эквивалентна p-мерной AP-модели первого порядка. Последнее означает, что для исследования APCC-последовательности, наряду со спектральными методами, можно использовать методы, предназначенные для работы с векторными стохастическими линейными разностными уравнениями (например, рассмотренный выше метод моментов).

Пример 6.10. Вычислить математическое ожидание и дисперсию AP-последовательности второго порядка вида

$$\xi_n - \gamma \xi_{n-1} + \gamma^2 \xi_{n-2} = \varepsilon_n, \tag{6.25}$$

если $\mathbf{M}\{\varepsilon_n\}=m_\varepsilon$ и $\mathbf{D}\{\varepsilon_n\}=D_\varepsilon,$ а параметр $0\leqslant\gamma<1.$

Решение. Приведем (6.25) к виду (6.22) и применим метод моментов. Из (6.25) следует, что $b_1=-\gamma,\,b_2=\gamma^2,\,a_0=1,\,a_1=0.$ Тогда из (6.23) и (6.24) получаем

$$\begin{cases} \xi_1(n) = \gamma \xi_1(n-1) - \gamma^2 \xi_2(n-1) + \varepsilon_n, \\ \xi_2(n) = \xi_1(n-1), \end{cases}$$
 (6.26)

поэтому
$$A=\left[egin{array}{cc} \gamma & -\gamma^2 \\ 1 & 0 \end{array}
ight],\, B=\left[egin{array}{cc} 1 \\ 0 \end{array}
ight].$$

Проверим для модели (6.26) условие асимптотической устойчивости. Из (6.26) следует, что $\det[A-xI]=x^2-\gamma x+\gamma^2=0$. Корни этого уравнения $x_{1,2}=\frac{\gamma}{2}(1\pm i\sqrt{3})$, поэтому $|x_1|=|x_2|=\gamma<1$ по условию. Это означает, что $\{\xi(n)\}$ — стационарная СП и существуют m_ξ и D_ξ , удовлетворяющие уравнениям (6.20) метода моментов. Для упрощения дальнейших вычислений заметим, что $\xi_2(n)=\xi_1(n-1)$, следовательно, $m_\xi=\begin{bmatrix}m\\m\end{bmatrix}$, а $D_\xi=\begin{bmatrix}d&k\\k&d\end{bmatrix}$, где $m=\mathbf{M}\{\xi_n\},\ d=\mathbf{D}\{\xi_n\},\ k=\mathbf{cov}\{\xi_n,\xi_{n-1}\}.$

Подставляя указанные m_{ξ} и D_{ξ} в систему (6.20), находим

$$\begin{cases} m = \gamma m - \gamma^2 m + m_{\varepsilon}, \\ d = \gamma^2 d - 2\gamma^3 k + \gamma^4 d + D_{\varepsilon}, \\ k = \gamma d - \gamma^2 k. \end{cases}$$

Решим полученную систему уравнений относительно m, d, k:

$$m = \frac{m_{\varepsilon}}{1 - \gamma + \gamma^2}, \qquad d = D_{\varepsilon} \frac{1 + \gamma^2}{1 - \gamma^6}, \qquad k = D_{\varepsilon} \frac{\gamma}{1 - \gamma^6}.$$

Так как $\xi_n = \xi_1(n)$, то $\mathbf{M}\{\xi_n\} = m$, а $\mathbf{D}\{\xi_n\} = d$. Заметим, что выражение для дисперсии СП $\{\xi_n\}$ совпадает с выражением, полученным ранее с помощью спектрального метода в примере 6.6.

6.4. Фильтр Калмана. В данном пункте мы рассмотрим задачу оценивания траектории некоторой векторной СП, удовлетворяющей многомерному разностному линейному стохастическому уравнению, по косвенным линейным наблюдениям, искаженным случайными ошибками.

Предварительно рассмотрим постановку задачи оценивания по среднеквадратическому критерию (sadaча c.к.-оценивания) для некоторого случайного вектора ξ по наблюдениям, составляющим случайный вектор η (см. также пп. 14.6, 14.7).

Определение 6.7. Случайный вектор $\hat{\xi} = \hat{\varphi}(\eta)$ называется $c.\kappa.$ -оптимальной оценкой случайного вектора ξ по наблюдениям η , если

$$\mathbf{M}\{|\xi - \widehat{\xi}|^2\} \leqslant \mathbf{M}\{|\xi - \widetilde{\xi}|^2\},\tag{6.27}$$

где $\widetilde{\xi}=\widetilde{\varphi}(\eta)$ — произвольное измеримое преобразование вектора наблюдений η (т. е. $\widetilde{\xi}$ — произвольная допустимая оценка для ξ по η).

Структура с.к.-оптимальной оценки в общем случае описывается следующей теоремой (см. также п. 14.5).

Теорема 6.2. Пусть $\mathbf{M}\{|\xi|^2\}<\infty$, тогда с.к.-оптимальная оценка $\widehat{\xi}$ существует и имеет вид

$$\widehat{\xi} = \widehat{\varphi}(\eta) = \mathbf{M}\{\xi \mid \eta\},\tag{6.28}$$

где $\mathbf{M}\{\xi \mid \eta\}$ — условное математическое ожидание случайного вектора ξ относительно случайного вектора наблюдений η .

Формула (6.28) позволяет оценить СВ ξ по η при практически произвольном совместном законе распределения оцениваемого и наблюдаемого случайных векторов. Однако в общем случае найти аналитическую формулу для $\mathbf{M}\{\xi\mid\eta\}$ весьма трудно. Если же ограничиться одним частным, но практически важным случаем, то удается найти простое аналитическое выражение для $\hat{\xi}$.

T е о р е м а 6.3. Пусть случайный вектор $\zeta = \{\xi^*, \eta^*\}^*$ является гауссовским, а $R_\eta = \mathbf{cov}\{\eta, \eta\}$ — невырожденная матрица, тогда

$$\hat{\xi} = m_{\xi} + R_{\xi\eta} R_{\eta}^{-1} (\eta - m_{\eta}),$$
(6.29)

где $m_{\xi} = \mathbf{M}\{\xi\}$ и $m_{\eta} = \mathbf{M}\{\eta\}$ — математические ожидания CB ξ и η , а $R_{\xi\eta} = \mathbf{cov}\{\xi,\eta\}$ — их взаимная ковариационная матрица. При этом оценка $\hat{\xi}$ — несмещенная $(m. e. \mathbf{M}\{\xi-\hat{\xi}\}=0)$, а ковариационная матрица \hat{P} ее ошибки имеет вид

$$\widehat{P} = \mathbf{cov}\{\xi - \widehat{\xi}, \xi - \widehat{\xi}\} = R_{\xi} - R_{\xi\eta}R_{\eta}^{-1}R_{\xi\eta}^*, \tag{6.30}$$

 $r\partial e R_{\xi} = \mathbf{cov}\{\xi, \xi\}.$

Kритерий качества c.к.-оптимальной оценки $\widehat{\xi}$ имеет вид

$$\mathbf{M}\{|\xi - \widehat{\xi}|^2\} = \operatorname{tr}[\widehat{P}],\tag{6.31}$$

 $ede \ tr[\cdot] - cned \ матрицы.$

Формула (6.29) дает явное выражение для $\mathbf{M}\{\xi \mid \eta\}$ в гауссовском случае, а сама теорема 6.3 известна как теорема о нормальной корреляции (см. п. 14.6).

 Π р и м е р 6.11. Π усть оцениваемый ξ и наблюдаемый η векторы связаны соотношением многомерной линейной регрессии:

$$\eta = A\xi + \varepsilon, \tag{6.32}$$

где $\xi \sim \mathcal{N}(m_{\xi}; R_{\xi}), \varepsilon \sim \mathcal{N}(m_{\varepsilon}; R_{\varepsilon}), \mathbf{cov}\{\xi, \varepsilon\} = 0, A$ — известная неслучайная матрица. Предположим, что ковариационная матрица R_{ε} ошибок наблюдений ε — невырожденная. Найти выражение для $\widehat{\xi}$.

Решение. В силу линейности преобразования (6.32) η является гауссовским СВ, и, более того, вектор $\zeta = \{\xi^*, \eta^*\}^* = \{\xi^*, \xi^*A^* + \varepsilon^*\}^*$ также гауссовский. Поэтому для вычисления $\widehat{\xi}$ можно использовать утверждение теоремы 6.3. Пусть m_{ξ} и R_{ξ} известны. Найдем выражение для m_{η} , R_{η} и $R_{\xi\eta}$, исходя из модели (6.32):

$$m_{\eta} = \mathbf{M}\{A\xi + \varepsilon\} = Am_{\xi} + m_{\varepsilon},$$
 $R_{\eta} = \mathbf{cov}\{\eta, \eta\} = \mathbf{cov}\{A\xi + \varepsilon, A\xi + \varepsilon\} = AR_{\xi}A^* + R_{\varepsilon},$

где учтено, что $\mathbf{cov}\{\xi,\varepsilon\}=0$. Аналогично получаем

$$R_{\xi\eta} = \mathbf{cov}\{\xi, A\xi + \varepsilon\} = R_{\xi}A^*.$$

Подставляя найденные выражения в (6.29), находим

$$\widehat{\xi} = m_{\xi} + R_{\xi} A^* (A R_{\xi} A^* + R_{\varepsilon})^{-1} (\eta - A m_{\xi} - m_{\varepsilon}). \tag{6.33}$$

Заметим, что обратная матрица в (6.33) существует в силу того, что $AR_{\mathcal{E}}A^* + R_{\mathcal{E}} \geqslant R_{\mathcal{E}} > 0$ по условию.

Рассмотренная выше техника оценивания может теперь быть использована для построения алгоритма рекуррентной фильтрации Калмана.

Пусть СП $\{\xi_n\}$ удовлетворяет разностному стохастическому уравнению

$$\xi_n = A_n \xi_{n-1} + B_n \varepsilon_n, \quad n \geqslant 1, \tag{6.34}$$

которое решается с начальным условием

$$\xi_0 = \gamma$$
,

где $\gamma \sim \mathcal{N}(m_{\gamma}; R_{\gamma}), \ \{\varepsilon_n\}$ — дискретный векторный гауссовский белый шум, $\mathbf{M}\{\varepsilon_n\} = m_{\varepsilon}(n), \ \mathbf{cov}\{\varepsilon_n, \varepsilon_n\} = D_{\varepsilon}(n), \ \mathbf{cov}\{\varepsilon_n, \varepsilon_k\} = 0, \ \mathbf{ec}$ ли $n \neq k$. Также предполагается, что γ и $\{\varepsilon_n\}$ независимы. В силу линейности модели (6.34) и сделанных предположений CB ξ_n имеет гауссовское распределение при каждом $n \geqslant 1$, если $\{A_n, B_n\}$ — последовательности неслучайных матриц.

Предположим, что СВ ξ_n в каждый момент времени $n\geqslant 1$ доступен косвенным измерениям по схеме

$$\eta_n = C_n \xi_n + v_n, \quad n = 1, 2, \dots,$$
(6.35)

где η_n — вектор результатов измерений в момент n; C_n — известная неслучайная матрица, а $\{v_n\}$ — гауссовская СП, описывающая ошибки наблюдений. Далее предполагается, что $\{v_n\}$ — векторный дискретный белый шум, $\mathbf{M}\{v_n\} = m_v(n)$, $\mathbf{cov}\{v_n, v_n\} = D_v(n)$, причем матрицы $D_v(n)$ — невырожденные. Будем также считать, что СП $\{v_n\}$ не зависит от $\{\varepsilon_n\}$ и от γ . Уравнения (6.34), (6.35) описывают динамическую модель наблюдений Калмана.

Обозначим $\eta^n = \{\eta_1^*, \dots, \eta_n^*\}^*$ — вектор всех наблюдений до момента n включительно. Рассмотрим задачу построения с.к.-оптимальной оценки $\hat{\xi}_n$ для СП ξ_n , $n \ge 1$, удовлетворяющей уравнению (6.34), по наблюдениям η^n , полученным по схеме (6.35).

Теорема 6.4 (Калман). Пусть выполнены сформулированные выше предположения о модели наблюдений (6.34), (6.35), тогда с.к.-оптимальная оценка $\hat{\xi}_n$ для ξ_n по наблюдениям η^n удовлетворяет разностному стохастическому уравнению

$$\begin{cases}
\widehat{\xi}_n = \overline{\xi}_n + \overline{P}_n C_n^* (C_n \overline{P}_n C_n^* + D_v(n))^{-1} \times \\
\times (\eta_n - C_n \overline{\xi}_n - m_v(n)), \quad n \geqslant 1, \\
\widehat{\xi}_0 = m_{\gamma},
\end{cases} (6.36)$$

 $\varepsilon \partial e \ \overline{\xi}_n = A_n \widehat{\xi}_{n-1} + B_n m_{\varepsilon}(n), \ a \ \overline{P}_n = A_n \widehat{P}_{n-1} A_n^* + B_n D_{\varepsilon}(n) B_n^*.$

Матрица \widehat{P}_n является ковариационной матрицей ошибки $\Delta \widehat{\xi}_n = \xi_n - \widehat{\xi}_n$ оценки и удовлетворяет разностному матричному урав-

$$\begin{cases}
\widehat{P}_n = \overline{P}_n - \overline{P}_n C_n^* (C_n \overline{P}_n C_n^* + D_v(n))^{-1} C_n \overline{P}_n, & n \geqslant 1, \\
\widehat{P}_0 = R_{\gamma}.
\end{cases} (6.37)$$

Рекуррентные уравнения (6.36), (6.37) известны в литературе по теории стохастических систем как $\partial uc\kappa pemhu\ddot{u}$ фильтр Калмана.

Если ввести обозначение $k_n = \overline{P}_n C_n^* (C_n \overline{P}_n C_n^* + D_v(n))^{-1}$, то уравнение фильтра Калмана можно записать в более компактном виде:

$$\begin{cases} \widehat{\xi}_n = \overline{\xi}_n + k_n(\eta_n - C_n \overline{\xi}_n - m_v(n)), & \widehat{\xi}_0 = m_\gamma, \\ \widehat{P}_n = (I - k_n C_n) \overline{P}_n, & \widehat{P}_0 = R_\gamma, \end{cases}$$

где k_n называется матричным коэффициентом усиления фильтра. Заметим, что если наблюдения (6.35) отсутствуют, т.е. $C_n=0$, то $k_n=0$. В этом случае уравнения фильтра Калмана (6.36), (6.37) принимают вид

$$\begin{cases} \hat{\xi}_n = A_n \hat{\xi}_{n-1} + B_n m_{\varepsilon}(n), & \hat{\xi}_0 = m_{\gamma}, \\ \hat{P}_n = A_n \hat{P}_{n-1} A^* + B_n D_{\varepsilon}(n) B_n^*, & \hat{P}_0 = R_{\gamma}. \end{cases}$$

Таким образом, полученные уравнения совпадают с уравнениями метода моментов (6.17), (6.18), т.е. $\hat{\xi}_n = \mathbf{M}\{\xi_n\}$, а $\hat{P}_n = \mathbf{cov}\{\xi_n,\xi_n\}$. Последнее означает, что с.к.-оптимальной оценкой СП $\{\xi_n\}$ является ее математическое ожидание, если СП $\{\xi_n\}$ недоступна наблюдению (т.е. у нас нет дополнительной измерительной информации).

Пример 6.12. Рассматривается скалярная модель наблюдения

$$\begin{cases} \xi_n = a\xi_{n-1} + \varepsilon_n, & \xi_0 = \gamma, \\ \eta_n = \xi_n + v_n, & n \geqslant 1, \end{cases}$$
 (6.38)

где $\{\varepsilon_n\}$, $\{v_n\}$ — стационарные и центрированные гауссовские белые шумы. Требуется построить для (6.38) фильтр Калмана.

Решение. По условию $m_\varepsilon(n)=m_v(n)=0,\ D_\varepsilon(n)=r_\varepsilon=\mathrm{const},$ $D_v(n)=r_v=\mathrm{const},\ A_n=a,\ B_n=C_n=1.$ Поэтому

$$\widehat{\xi}_n = \overline{\xi}_n + k_n (\eta_n - \overline{\xi}_n),$$

где
$$\overline{\xi}_n = a\widehat{\xi}_{n-1}$$
, а $k_n = \frac{\overline{P}_n}{\overline{P}_n + r_v} = \frac{a^2\widehat{P}_{n-1} + r_\varepsilon}{a^2\widehat{P}_{n-1} + r_\varepsilon + r_v}$.

Таким образом, уравнение для оценки ξ_n имеет вид

$$\widehat{\xi}_n = a\widehat{\xi}_{n-1} + k_n(\eta_n - a\widehat{\xi}_{n-1}), \quad \widehat{\xi}_0 = m_\gamma.$$
(6.39)

Теперь преобразуем (6.37) (учитывая скалярность модели):

$$\widehat{P}_n = \overline{P}_n \left(1 - \frac{\overline{P}_n}{\overline{P}_n + r_v} \right) = \frac{\overline{P}_n r_v}{\overline{P}_n + r_v} = k_n r_v. \tag{6.40}$$

Видно, что k_n удовлетворяет разностному уравнению

$$k_n = \frac{a^2 k_{n-1} + \rho}{a^2 k_{n-1} + \rho + 1},$$

8 Б.М. Миллер и А.Р. Панков

где $\rho = r_{\varepsilon}/r_{v}$, с начальным условием $k_{0} = \widehat{P}_{0}/r_{v} = R_{\gamma}/r_{v}$.

Окончательно уравнения рекуррентной фильтрации принимают следующий вид:

$$\begin{cases} \hat{\xi}_n = a\hat{\xi}_{n-1} + k_n(\eta_n - a\hat{\xi}_{n-1}), & \hat{\xi}_0 = m_{\gamma}, \\ k_n = 1 - (a^2k_{n-1} + \rho + 1)^{-1}, & k_0 = R_{\gamma}/r_v, \\ \hat{P}_n = r_v k_n, \end{cases}$$

причем \hat{P}_n совпадает с дисперсией ошибки оценки $\hat{\xi}_n$.

Алгоритм рекуррентной фильтрации Калмана позволяет решать разнообразные задачи оценивания в случае, когда исходная модель может быть приведена к виду (6.34), (6.35).

Пример 6.13. Модель наблюдений имеет вид

$$\eta_n = C_n \theta + v_n, \quad n = 1, 2, \dots,$$
(6.41)

где η_n — вектор результатов наблюдения, $\{v_n\}$ — гауссовский векторный белый шум с параметрами $m_v(n)$ и $D_v(n)>0$, описывающий ошибки наблюдений, θ — гауссовский вектор неизвестных параметров модели, $\{C_n\}$ — последовательность известных неслучайных матриц. Известно, что $\mathbf{M}\{\theta\}=m_\theta$, $\mathbf{cov}\{\theta,\theta\}=R_\theta$ и θ не зависит от $\{v_n\}$. Построить рекуррентный алгоритм с.к.-оптимального оценивания θ по наблюдениям $\eta^n=\{\eta_1^*,\ldots,\eta_n^*\}^*$.

Решение. Модель (6.41) является частным случаем модели (6.34), (6.35). Действительно, обозначим $\xi_n=\theta$ при $n=0,1,\ldots$, тогда уравнение динамики СП ξ_n имеет вид

$$\xi_n = \xi_{n-1}, \quad n \geqslant 1 \tag{6.42}$$

с начальными условиями $\xi_0=\theta$, $\mathbf{M}\{\xi_0\}=m_\theta$, $R_{\xi_0}=\mathbf{cov}\{\xi_0,\xi_0\}=R_\theta$. Сравнивая (6.42) с (6.34), получаем: $A_n=I$, $B_n=0$. Заменяя в (6.41) θ на ξ_n , получаем уравнение наблюдения (6.35). Таким образом, (6.41) можно представить в виде совокупности уравнений (6.42), (6.35). Теперь можно воспользоваться теоремой 6.4. Из (6.36) с учетом $A_n=I$ и $B_n=0$ находим

$$\overline{\xi}_n = \widehat{\xi}_{n-1}, \quad \overline{P}_n = \widehat{P}_{n-1}.$$

Следовательно,

$$\begin{cases}
\hat{\xi}_{n} = \hat{\xi}_{n-1} + \hat{P}_{n-1}C_{n}^{*}(C_{n}\hat{P}_{n-1}C_{n}^{*} + D_{v}(n))^{-1} \times \\
\times (\eta_{n} - C_{n}\hat{\xi}_{n-1} - m_{v}(n)), \\
\hat{P}_{n} = \hat{P}_{n-1} - \hat{P}_{n-1}C_{n}^{*}(C_{n}\hat{P}_{n-1}C_{n}^{*} + D_{v}(n))^{-1}C_{n}\hat{P}_{n-1}.
\end{cases} (6.43)$$

Уравнения (6.43) решаются с начальными условиями:

$$\widehat{\xi}_0 = m_\theta, \qquad \widehat{P}_0 = R_\theta. \tag{6.44}$$

При этом $\hat{\theta}_n = \hat{\xi}_n$ — с.к.-оптимальная оценка для θ по η^n , а \hat{P}_n — ковариационная матрица ее ошибки.

Уравнения (6.43), (6.44) описывают рекуррентный вариант *обоб*щенного метода наименьших квадратов. ■

Замечание. В примере 6.13 мы построили с.к.-оптимальную оценку для θ по наблюдениям η^n , т. е. $\widehat{\theta}=\mathbf{M}\{\theta\mid\eta^n\}$ в предположении гауссовости θ и $\{v_n\}$. Если это предположение не выполнено, то можно показать, что $\widehat{\theta}$ является наилучшей линейной оценкой для θ по наблюдениям η^n , т. е. $\widehat{\theta}_n$ является наиболее точной среди всех оценок вида $\widehat{\theta}_n = G\eta^n + g$, где G,g — произвольные неслучайные матричные коэффициенты соответствующих размеров (см. также п. 14.7).

В заключение рассмотрим ситуацию, когда модель наблюдения (6.34), (6.35) является стационарной, а разностное стохастическое уравнение (6.34) — асимптотически устойчивым. В этом случае все параметры модели (6.34), (6.35) не зависят от времени n, а матрица A удовлетворяет условию (6.16). Будем называть модель (6.34), (6.35) стационарной калмановской моделью наблюдения.

T е о р е м а 6.5. Для стационарной калмановской модели наблюдения справедливо предельное соотношение: $\hat{P}_n \to \hat{P} \geqslant 0$ при любом

начальном условии $\widehat{P}_0 \geqslant 0$, причем \widehat{P} не зависит от \widehat{P}_0 .

Из теоремы 6.5 и теоремы Калмана немедленно следует

$$\overline{P}_n = A\widehat{P}_{n-1}A^* + BD_{\varepsilon}B^* \to A\widehat{P}A + BD_{\varepsilon}B^* = \overline{P},$$

$$k_n = \overline{P}_nC^*(C\overline{P}_nC^* + D_v)^{-1} \to \overline{P}C^*(C\overline{P}C^* + D_v)^{-1} = k, \quad n \to \infty.$$

Полученные предельные соотношения могут быть использованы для построения *стационарных уравнений фильтра Калмана*:

$$\begin{cases}
\widehat{\xi}_n = \overline{\xi}_n + k(\eta_n - C\overline{\xi}_n - m_v), \\
\overline{\xi}_n = A\widehat{\xi}_{n-1} + Bm_{\varepsilon}, \quad \widehat{\xi}_0 = m_{\gamma},
\end{cases} (6.45)$$

где $k = \overline{P}C^*(C\overline{P}C^* + D_v)^{-1}$, а матрица \overline{P} определяется из системы алгебраических уравнений

$$\begin{cases}
\overline{P} = A\widehat{P}A^* + BD_{\varepsilon}B^*, \\
\widehat{P} = \overline{P} - \overline{P}C^*(C\overline{P}C^* + D_v)^{-1}C\overline{P}.
\end{cases} (6.46)$$

Уравнения (6.45), (6.46) описывают алгоритм фильтрации для достаточно больших n, поэтому можно считать, что процесс $\{\xi_n\}$ является стационарным (т. е. закончился переходный процесс, вызванный наличием начального значения $\xi_0 = \gamma$).

Пример 6.14. Построить стационарный вариант фильтра Калма-

на для модели (6.38) в предположении, что $r_{\varepsilon}=1-a^2,\,r_v=1.$ Решение. Заметим, что если $\{\xi_n\}$ — стационарная последовательность, то $R_{\xi}=\mathbf{cov}\{\xi_n,\xi_n\}=r_{\varepsilon}/(1-a^2)=1.$ Условие асимптотической устойчивости для (6.38) означает, что |a| < 1. В силу теоремы 6.5 уравнение фильтрации (6.39) имеет вид

$$\widehat{\xi}_n = a\widehat{\xi}_{n-1} + k(\eta_n - a\widehat{\xi}_{n-1}), \tag{6.47}$$

где $k=\lim_{n\to\infty}k_n=rac{a^2\widehat{P}+(1-a^2)}{a^2\widehat{P}+(1-a^2)+1},$ с учетом того, что $\lim_{n\to\infty}\widehat{P}_{n-1}=\widehat{P},$

 $r_{arepsilon}=1-a^2,\,r_v=1.$ Из соотношения (6.40) находим, что $\widehat{P}=\lim_{n o\infty}\widehat{P}_n=\lim_{n o\infty}k_nr_v=k,$ поэтому для вычисления \hat{P} необходимо решить уравнение

$$\widehat{P} = \frac{a^2 \widehat{P} + (1 - a^2)}{a^2 \widehat{P} + (1 - a^2) + 1},$$
(6.48)

причем нас интересует только неотрицательное решение $\widehat{P}\geqslant 0$, поскольку \widehat{P} — предельное значение дисперсии ошибки оценки фильтра

Уравнение (6.48) после замены $\beta = (1-a^2)/a^2$ принимает вид

$$\widehat{P}^2 + 2\beta \widehat{P} - \beta = 0$$

и имеет единственное неотрицательное решение

$$\widehat{P} = \sqrt{\beta^2 + \beta} - \beta = \frac{\sqrt{1 - a^2} - (1 - a^2)}{a^2}.$$
(6.49)

Обозначим через $\sigma_{\varepsilon}=\sqrt{1-a^2}$ среднее квадратическое отклонение СП $\{\varepsilon_n\}$, тогда из (6.49) следует $\widehat{P}=\frac{\sigma_{\varepsilon}}{\sigma_{\varepsilon}+1}$. В силу (6.48) $k=\widehat{P},$ поэтому уравнение фильтрации (6.47) принимает окончательный вид

$$\widehat{\xi}_n = a\widehat{\xi}_{n-1} + \frac{\sigma_{\varepsilon}}{\sigma_{\varepsilon} + 1}(\eta_n - a\widehat{\xi}_{n-1}), \qquad \widehat{\xi}_0 = m_{\gamma}. \tag{6.50}$$

Точность оценки $\hat{\xi}_n$ асимптотически (т. е. при $n\to\infty$) можно характеризовать величиной \hat{P} , так как $\mathbf{M}\{(\xi_n-\hat{\xi}_n)^2\}\to\hat{P}=rac{\sigma_\varepsilon}{\sigma_\varepsilon+1}$ при $n \to \infty$.

Заметим, что дисперсия ошибок наблюдений в рассмотренном примере $r_v = 1$, а дисперсия ошибок оценивания $P \leqslant 1/2$. Действительно, из условия |a|<1 следует $\sigma_{\varepsilon}\leqslant 1$, что означает $\hat{P}=\frac{\sigma_{\varepsilon}}{\sigma_{\varepsilon}+1}\leqslant 1/2.$ Таким образом, процедура фильтрации позволяет существенно повысить точность оценивания СП $\{\xi_n\}$ по сравнению с измерениями. Отметим также, что если величина |a| близка к 1 (т. е. сечения СП $\{\xi_n\}$ сильно коррелированы), то \hat{P} может быть существенно меньше 1/2. Например, $\hat{P} \approx 0.304$ при a = 0.9 и $\hat{P} \approx 0.124$ при a = 0.99.

6.5. Нелинейная фильтрация марковских случайных по**следовательностей.** Пусть $\{\xi_n, n \ge 0\}$ — вещественная марковская СП с переходной плотностью p(n-1,x,n,y) и плотностью $p_0(x)$ распределения начального значения ξ_0 (см. п. 2.4). Далее предполагается, что $\xi_n \in \mathbb{R}^p, \, p \geqslant 1$, а $\mathbf{M}\big\{|\xi_n|^2\big\} < \infty$, т. е. $\{\xi_n\}$ — гильбертова СП. В каждый момент $n \geqslant 1$ СП $\{\xi_n\}$ доступна измерению по следую-

щей схеме:

$$\eta_n = \varphi_n(\xi_n) + v_n, \quad n = 1, 2, \dots,$$
(6.51)

где $\eta_n \in \mathbb{R}^q$ — результат n-го измерения; $\varphi_n(x)$ — q-мерная детерминированная нелинейная функция аргумента $x \in \mathbb{R}^p$; $\{v_n, n \geqslant 1\}$ q-мерный дискретный белый шум, причем сечения $\{v_n\}$ независимы в совокупности. Будем считать, что при каждом $n \geqslant 1$ CB v_n имеет плотность распределения $\rho_n(v), v \in \mathbb{R}^q$.

Так же как и в п. 6.4, η^n будет обозначать вектор, составленный из всех наблюдений $\{\eta_1, \ldots, \eta_n\}$ до момента n включительно. Тогда из теоремы 6.2 следует, что с.к.-оптимальная оценка CB ξ_n по наблюдениям η^n имеет вид

$$\hat{\xi}_n = \hat{G}_n(\eta^n) = \mathbf{M}\{\xi_n \mid \eta^n\}, \quad n = 1, 2, \dots$$
 (6.52)

Оценка $\hat{\xi}_n$ называется $c.\kappa.$ -оптимальной оценкой фильтрации СП $\{\xi_n\}$ по наблюдениям $\eta^n.$ Последовательность нелинейных операторов $\{\widehat{G}_n\}$ задает алгоритм с.к.-оптимальной нелинейной фильтрации C Π { ξ_n }.

Предположим, что существует условная плотность распределения CB ξ_n относительно η^n , которую мы будем далее обозначать $w_n(y)$, где $n \geqslant 1, y \in \mathbb{R}^p$. Тогда оператор \widehat{G}_n в (6.52) можно представить в интегральной форме (см. п. 14.5):

$$\widehat{\xi}_n = \int_{\mathbb{R}^n} y w_n(y) \, dy. \tag{6.53}$$

Для характеризации величины ошибки оценки $\widehat{\xi}_n$ можно воспользоваться ее условной ковариационной матрицей

$$\widehat{P}_n = \mathbf{M}\left\{ (\xi_n - \widehat{\xi}_n)(\xi_n - \widehat{\xi}_n)^* \mid \eta^n \right\} = \int_{\mathbb{R}^p} y y^* w_n(y) \, dy - \widehat{\xi}_n \widehat{\xi}_n^*. \tag{6.54}$$

Из (6.53), (6.54) следует, что

$$\mathbf{M}\left\{\xi_n - \hat{\xi}_n \mid \eta^n\right\} = \mathbf{M}\left\{\xi_n - \hat{\xi}_n\right\} = 0,$$

$$\mathbf{M}\left\{|\xi_n - \hat{\xi}_n|^2 \mid \eta^n\right\} = \operatorname{tr}[\hat{P}_n], \quad n = 1, 2, \dots$$

Таким образом, построение оценки фильтрации $\widehat{\xi}_n$ и алгоритма \widehat{G}_n фактически сводится к вычислению условной плотности $w_n(y)$. Заметим, что в общем случае $\eta^n \in \mathbb{R}^{n \times q}$, поэтому объем вычислений быстро увеличивается с ростом n. Если же оцениваемый процесс $\{\xi_n\}$ является марковским, то уравнения фильтрации могут быть выписаны в явном виде, причем алгоритм фильтрации \widehat{G}_n приобретает рекуррентный характер.

Введем функцию $\widetilde{w}_n(y)$, определяемую следующими рекуррентными функциональными соотношениями:

$$\begin{cases}
\widetilde{w}_n(y) = \rho_n(\eta_n - \varphi_n(y)) \int_{\mathbb{R}^p} \mathsf{p}(n-1, x, n, y) \, \widetilde{w}_{n-1}(x) \, dx, & n \geqslant 1, \\
\widetilde{w}_0(y) = p_0(y).
\end{cases}$$
(6.55)

Функция $\widetilde{w}_n(y)$ называется ненормированной условной плотностью распределения ξ_n относительно η^n . Можно показать, что

$$w_n(y) = \widetilde{w}_n(y) \left(\int_{\mathbb{D}_p} \widetilde{w}_n(y) \, dy \right)^{-1}. \tag{6.56}$$

Соотношения (6.53)–(6.56) определяют общий вид алгоритма с.к.-оптимальной нелинейной фильтрации марковской СП $\{\xi_n\}$ по наблюдениям $\{\eta_n\}$ (6.51).

Замечания. 1) Для линейно-гауссовской модели наблюдения (6.34), (6.35) уравнения нелинейной фильтрации превращаются в уравнения (6.36), (6.37) фильтра Калмана. Если же в модели наблюдения Калмана процессы $\{\varepsilon_n\}$, $\{v_n\}$ и начальный вектор γ не являются гауссовскими, то оценка $\widehat{\xi}_n$ (6.52) в общем слу чае будет нелинейно зависеть от наблюдений $\{\eta^n\}$ и может существенно отличаться от линейной оценки (6.36).

2) При практической реализации нелинейного фильтра (6.53)—(6.56) наибольшие трудности связаны с вычислением интегралов, если p>1. В случае, когда аналитическое вычисление интегралов невозможно, для $\widetilde{w}_n(y)$ используют подходящую параметрическую модель (например, аппроксимируют $\widetilde{w}_n(y)$ конечным разложением по системе базисных функций с неопределенными коэффициентами). Тогда уравнения (6.55) позволяют получить конечную систему рекуррентных уравнений, описывающих эволюцию во времени указанных

параметров (коэффициентов), после вычисления которых построение оценки $\hat{\xi}_n$ не представляет труда. В любом случае уравнения нелинейной фильтрации (6.53)–(6.56) позволяют построить некоторый «эталон» процедуры оценивания, с которым далее можно сравнивать результаты оценивания, полученные с помощью субоптимальных (приближенных) алгоритмов фильтрации (см. п. 6.6).

Широкий класс марковских СП можно построить с помощью модели, описываемой нелинейными разностными стохастическими уравнениями:

$$\begin{cases} \xi_n = a_n(\xi_{n-1}) + b_n(\xi_{n-1})\varepsilon_n, & n = 1, 2, \dots, \\ \xi_0 = \gamma, \end{cases}$$
 (6.57)

где $a_n(x), b_n(x), x \in \mathbb{R}^p$ — матричные нелинейные функции, $\{\varepsilon_n\}$ — векторный r-мерный белый шум, γ — CB начальных условий.

Уравнение (6.57) называется уравнением диффузии с дискретным временем. Решение $\{\xi_n\}$ уравнения (6.57) является марковским процессом, о чем свидетельствует следующая теорема.

Теорема 6.6. Пусть при каждом $n \geqslant 1$ функции $a_n(x)$, $b_n(x)$ измеримы по Борелю, а $\{\gamma, \varepsilon_1, \varepsilon_2, \dots\}$ независимы в совокупности. Тогда СП $\{\xi_n\}$, удовлетворяющая (6.57), является марковской и имеет переходную вероятность

$$\mathsf{P}(n-1,x,n,B) = \mathbf{P}\{a_n(x) + b_n(x)\varepsilon_n \in B\}, \quad x \in \mathbb{R}^p, B \in \mathcal{B}(\mathbb{R}^p).$$

При определенных условиях будет существовать также и переходная плотность p(n-1,x,n,y):

$$\mathsf{P}(n-1,x,n,B) = \int\limits_{B} \mathsf{p}(n-1,x,n,y) \, dy \quad \forall \, B \in \mathcal{B}(\mathbb{R}^p).$$

Действительно, пусть матрица $b_n(x)$ обратима для всякого $x \in \mathbb{R}^p$, а СВ ε_n имеет плотность $p_n(x)$, тогда

$$P(n-1, x, n, B) = \mathbf{P}\{a_n(x) + b_n(x)\varepsilon_n \in B\} = \frac{1}{\det[b_n(x)]} \int_B p_n(b_n^{-1}(x)(y - a_n(x))) dy,$$

поэтому

$$p(n-1,x,n,y) = \frac{1}{\det[b_n(x)]} p_n(b_n^{-1}(x)y - b_n^{-1}(x)a_n(x)).$$
 (6.58)

Для корректной постановки задачи с.к.-оптимальной фильтрации процесса $\{\xi_n\}$ в (6.57) необходимо, чтобы он был гильбертовым. Соответствующие достаточные условия приведены в следующем примере.

 Π р и мер 6.15. Пусть в модели (6.57) при каждом $n\geqslant 1$ найдется $K_n<\infty,$ такое, что

$$|a_n(x)|^2 + ||b_n(x)||^2 \le K_n(1+|x|^2),$$
 (6.59)

причем $\mathbf{M}\big\{|\varepsilon_n|^2\big\}<\infty,\ \mathbf{M}\big\{|\gamma|^2\big\}<\infty.$ Показать, что $\mathbf{M}\big\{|\xi_n|^2\big\}<\infty$ при всех $n\geqslant 1$.

Решение. Заметим, что $\|b_n(x)\|^2 = \mathrm{tr}[b_n(x)b_n^*(x)]$ по определению, а для любых СВ X и Y выполнено неравенство

$$\mathbf{M}\{|X+Y|^2\} \le 2(\mathbf{M}\{|X|^2\} + \mathbf{M}\{|Y|^2\}).$$
 (6.60)

Для доказательства воспользуемся методом математической индукции. Предположим, что $\mathbf{M}\{|\xi_{n-1}|^2\}<\infty$. Покажем, что в условиях примера в этом случае $\mathbf{M}\{|\xi_n|^2\}<\infty$. Действительно,

$$\begin{split} \mathbf{M}\big\{|\xi_n|^2\big\} &= \mathbf{M}\big\{|a_n(\xi_{n-1}) + b_n(\xi_{n-1})\varepsilon_n|^2\big\} \leqslant \\ &\leqslant 2\,\mathbf{M}\big\{|a_n(\xi_{n-1})|^2\big\} + 2\,\mathbf{M}\big\{|b_n(\xi_{n-1})\varepsilon_n|^2\big\} \leqslant \\ &\leqslant 2\,\mathbf{M}\big\{|a_n(\xi_{n-1})|^2\big\} + 2\,\mathbf{M}\big\{\|b_n(\xi_{n-1})\|^2|\varepsilon_n|^2\big\} \,. \end{split}$$

По условию $b_n(\xi_{n-1})$ не зависит от ε_n , поэтому с учетом (6.59) и (6.60)

$$\mathbf{M}\{|\xi_{n}|^{2}\} \leq 2 \mathbf{M}\{K_{n}(1+|\xi_{n-1}|^{2})\} + 2 \mathbf{M}\{K_{n}(1+|\xi_{n-1}|^{2})\} \times \\ \times \mathbf{M}\{|\varepsilon_{n}|^{2}\} = 2 K_{n}(1+\mathbf{M}\{|\xi_{n-1}|^{2}\})(1+\mathbf{M}\{|\varepsilon_{n}|^{2}\}) < \infty$$

в силу сделанного индуктивного предположения и условий примера. Итак, $\mathbf{M}\{|\xi_{n-1}|^2\}<\infty$ влечет $\mathbf{M}\{|\xi_n|^2\}<\infty$, что вместе с условием $\mathbf{M}\{|\xi_0|^2\}=\mathbf{M}\{|\gamma|^2\}<\infty$ доказывает требуемое утверждение.

В заключение рассмотрим пример, описывающий алгоритм нелинейной фильтрации для конкретной СП.

Пример 6.16. Скалярные вещественные СП $\{\xi_n\}$ и $\{\eta_n\}$ описываются уравнениями

$$\begin{cases} \xi_n = A_n \ \operatorname{arctg} \xi_{n-1} + B_n \, \varepsilon_n, & \xi_0 = \gamma, \\ \eta_n = \alpha_n \, \xi_n^2 + \beta_n \, w_n, \end{cases}$$
 (6.61)

где $\{A_n,B_n,\alpha_n,\beta_n\}$ — заданные коэффициенты, $B_n\neq 0,\ \beta_n\neq 0,\ \gamma$ имеет равномерное распределение на $[-\Delta,\Delta], \Delta>0, \{\varepsilon_n\}$ — центрированный гауссовский белый шум, $\mathbf{M}\{\varepsilon_n^2\}=\sigma_n^2>0,\ a\ \{w_n\}$ — белый шум, сечение w_n которого распределено по закону Лапласа с параметром $\lambda_n>0.$ В предположении, что $\{\varepsilon_n\},\ \{w_n\}$ и γ независимы, построить с.к.-оптимальный фильтр для $\{\xi_n\}$ по наблюдениям $\{\eta_n\}$.

Решение. В условиях примера из теоремы 6.6 и примера 6.15 следует, что $\{\xi_n\}$ — марковская гильбертова СП. Так как плотность $p_n(x)$ СВ ε_n равна

$$p_n(x) = (2\pi\sigma_n^2)^{-1/2} \exp\{-x^2/2\sigma_n^2\},$$

то из (6.58) с учетом $B_n \neq 0$ получаем

$$p(n-1, x, n, y) = \left[2\pi (B_n \sigma_n)^2\right]^{-1/2} \exp\left\{-(y - A_n \arctan x)^2/(2B_n^2 \sigma_n^2)\right\}.$$

Плотность $p_0(y)$ начального распределения по условию равна

$$p_0(y) = \begin{cases} (2\Delta)^{-1}, & \text{если } y \in [-\Delta, \Delta], \\ 0 & \text{в противном случае.} \end{cases}$$
 (6.62)

По условию СВ w_n имеет плотность вероятности

$$p_{w_n}(x) = \frac{\lambda_n}{2} \exp\{-\lambda_n |x|\},$$

поэтому, обозначая $v_n = \beta_n w_n$, находим плотность $\rho_n(v)$ CB v_n :

$$\rho_n(v) = \mu_n \exp\{-2\mu_n |x|\},$$
 где $\mu_n = \lambda_n/(2|\beta_n|).$

Теперь, подставляя найденные выражения для $\mathbf{p}(n-1,x,n,y)$ и $\rho_n(v)$ в уравнение (6.55) для ненормированной условной плотности $\widetilde{w}_n(y)$, находим

$$\widetilde{w}_{n}(y) = c_{n}^{(1)} \exp\{-2\mu_{n}(\eta_{n} - \alpha_{n}y^{2})\} \times$$

$$\times \int_{-\infty}^{\infty} \exp\{-c_{n}^{(2)}(y - A_{n} \operatorname{arctg} x)^{2}\} \widetilde{w}_{n-1}(x) dx, \quad (6.63)$$

где $c_n^{(1)}=\lambda_n(\sqrt{8\pi}|B_n\beta_n|\sigma_n)^{-1},$ $c_n^{(2)}=(\beta_n\sigma_n)^{-2}/2$ — детерминированные числовые последовательности.

Уравнение (6.63) решается рекуррентно для $n=1,2,\ldots$ с начальным условием $\widetilde{w}_0(y)=p_0(y)$, где $p_0(y)$ имеет вид (6.62). После вычисления $\widetilde{w}_n(y)$ с.к.-оптимальная оценка ξ_n определяется по формуле

$$\widehat{\xi}_n = \int_{-\infty}^{\infty} y \, \widetilde{w}_n(y) \, dy \, \Big(\int_{-\infty}^{\infty} \widetilde{w}_n(y) \, dy \Big)^{-1}.$$

Условная дисперсия ошибки оценки $\widehat{P}_n = \mathbf{M} \{ (\xi_n - \widehat{\xi}_n)^2 \mid \eta^n \}$ вычисляется по формуле (6.54) с учетом (6.56).

6.6. Алгоритмы субоптимальной нелинейной фильтрации. Рассмотрим вначале модель наблюдения вида

$$\xi_n = A_n \xi_{n-1} + U_n + B_n \varepsilon_n, \qquad \xi_0 = \gamma, \tag{6.64}$$

$$\eta_n = C_n \xi_n + W_n + D_n v_n, \qquad n = 1, 2, \dots,$$
(6.65)

где $\{\varepsilon_n\}$, $\{v_n\}$ — независимые стандартные гауссовские белые шумы; γ — вектор начальных условий с распределением $\mathcal{N}(m_\gamma;R_\gamma)$, не зависящий от $\{\varepsilon_n\}$, $\{v_n\}$; $\{A_n,B_n,C_n,D_n\}$ — известные матрицы, причем $D_nD_n^*>O$ при всех $n\geqslant 1$; $\{U_n,V_n\}$ — известные векторы.

Из теоремы 6.4 Калмана следует, что с.к.-оптимальная оценка $\hat{\xi}_n$ по наблюдениям $\eta^n=\{\eta_1^*,\ldots,\eta_n^*\}^*$ вычисляется по формуле

$$\begin{cases}
\widehat{\xi}_n = \overline{\xi}_n + k_n (\eta_n - C_n \overline{\xi}_n - W_n), & \widehat{\xi}_0 = m_\gamma, \\
\overline{\xi}_n = A_n \widehat{\xi}_{n-1} + U_n,
\end{cases} (6.66)$$

$$k_n = \overline{P}_n C_n^* (C_n \overline{P}_n C_n^* + D_n D_n^*)^{-1}, \tag{6.67}$$

$$\begin{cases}
\widehat{P}_n = (I - k_n C_n) \overline{P}_n, & \widehat{P}_0 = R_{\gamma}, \\
\overline{P}_n = A_n \widehat{P}_{n-1} A_n^* + B_n B_n^*.
\end{cases}$$
(6.68)

Напомним, что $\hat{\xi}_n = \mathbf{M}\{\xi_n \mid \eta^n\}$, $\overline{\xi}_n = \mathbf{M}\{\xi_n \mid \eta^{n-1}\}$ — с.к.-оптимальный прогноз (на один шаг) для ξ_n по наблюдениям η^{n-1} , $\hat{P}_n = \mathbf{cov}\{\xi_n - \hat{\xi}_n, \xi_n - \hat{\xi}_n \mid \eta^n\}$ — условная ковариационная матрица ошибки оценки $\hat{\xi}_n$, а $\overline{P}_n = \mathbf{cov}\{\xi_n - \overline{\xi}_n, \xi_n - \overline{\xi}_n \mid \eta^{n-1}\}$ — условная ковариационная матрица ошибки прогноза $\overline{\xi}_n$ (см. задачу 10).

Уравнения (6.66)–(6.68) можно использовать для приближенного оценивания процесса $\{\xi_n\}$ в нелинейной разностной стохастической модели наблюдения

$$\xi_n = a_n(\xi_{n-1}) + u_n + B_n \varepsilon_n, \qquad \xi_0 = \gamma, \tag{6.69}$$

$$\eta_n = c_n(\xi_n) + w_n + D_n v_n, \qquad n = 1, 2, \dots,$$
(6.70)

где $a_n(\xi), c_n(\xi)$ — известные нелинейные дифференцируемые функции; u_n, w_n — известные векторы.

Предположим, что для $\{\xi_n\}$ имеется некоторая опорная траектория $\{\xi_n^{\rm o}\}$ такая, что $\mathbf{M}\{|\xi_n-\xi_n^{\rm o}|^2\}\ll 1$ (т. е. достаточно точно аппроксимирующая процесс $\{\xi_n\}$).

Проведем линеаризацию модели (6.69), разложив нелинейность в правой части около опорного значения $\xi_n^{\rm o}$ и отбросив члены второго

и более высоких порядков:

$$\xi_n = a_n(\xi_{n-1}^{\circ}) + \left. \frac{\partial a_n(\xi)}{\partial \xi} \right|_{\xi_{n-1}^{\circ}} (\xi_{n-1} - \xi_{n-1}^{\circ}) + u_n + B_n \varepsilon_n = A_n \xi_{n-1} + U_n + B_n \varepsilon_n,$$

где

$$A_n = \frac{\partial a_n(\xi)}{\partial \xi} \bigg|_{\xi_{n-1}^{\circ}}, \qquad U_n = a_n(\xi_{n-1}^{\circ}) - A_n \xi_{n-1}^{\circ} + u_n.$$
 (6.71)

Аналогичные преобразования проведем также и с моделью процесса измерений (6.70):

$$\eta_n = c_n(\xi_n^{\rm o}) + \left. \frac{\partial c_n(\xi)}{\partial \xi} \right|_{\xi^{\rm o}} (\xi_n - \xi_n^{\rm o}) + w_n + D_n v_n = C_n \xi_n + W_n + D_n v_n,$$

где

$$C_n = \left. \frac{\partial c_n(\xi)}{\partial \xi} \right|_{\xi_n^{\circ}}, \qquad W_n = c_n(\xi_n^{\circ}) - C_n \xi_n^{\circ} + w_n. \tag{6.72}$$

Теперь оценка $\hat{\xi}_n$ может быть построена по формулам линейной фильтрации (6.66)–(6.68), где параметры $\{A_n, U_n, C_n, W_n\}$ вычисляются по формулам (6.71), (6.72). Оценку $\widehat{\xi}_n$ обычно называют субоптимальной оценкой нелинейной фильтрации, а алгоритм оценивания (6.66)-(6.72) — алгоритмом субоптимальной нелинейной фильтрации первого порядка.

Рассмотрим два наиболее распространенных способа выбора опор-

ных значений ξ_{n-1}^{o} и ξ_{n}^{o} в формулах (6.71), (6.72). 1) Пусть $\{\xi_{n}^{o}\}$ является решением уравнения (6.69) при отсутствии случайных возмущений ($\{\xi_n^{\rm o}\}$ — невозмущенная траектория (6.69)):

$$\xi_n^{\circ} = a_n(\xi_{n-1}^{\circ}) + u_n, \qquad \xi_0^{\circ} = m_{\gamma}.$$
 (6.73)

Совокупность уравнений (6.66)-(6.73) называется линеаризованным ϕ ильтром Калмана (Л Φ К).

2) Пусть в (6.71) в качестве ξ_{n-1}^{o} выбирается оценка $\widehat{\xi}_{n-1}$. Тогда уравнения для прогноза $\overline{\xi}_n$ принимают вид

$$\overline{\xi}_n = A_n \widehat{\xi}_{n-1} + \left(a_n(\widehat{\xi}_{n-1}) - A_n \widehat{\xi}_{n-1} + u_n \right) = a_n(\widehat{\xi}_{n-1}) + u_n.$$

Теперь в (6.72) в качестве $\xi_n^{\rm o}$ можно использовать $\overline{\xi}_n$. Тогда

$$\widehat{\xi}_n = \overline{\xi}_n + k_n \left[\eta_n - C_n \overline{\xi}_n - \left(c_n (\overline{\xi}_n) - C_n \overline{\xi}_n + w_n \right) \right] =$$

$$= \overline{\xi}_n + k_n \left[\eta_n - c_n (\overline{\xi}_n) - w_n \right].$$

Итак, уравнения (6.66) принимают окончательный вид

$$\begin{cases}
\widehat{\xi}_n = \overline{\xi}_n + k_n \left[\eta_n - c_n(\overline{\xi}_n) - w_n \right], & \widehat{\xi}_0 = m_{\gamma}, \\
\overline{\xi}_n = a_n(\widehat{\xi}_{n-1}) + u_n,
\end{cases} (6.74)$$

Матрицы A_n и C_n вычисляются в соответствии с (6.71), (6.72):

$$A_n = \frac{\partial a_n(\xi)}{\partial \xi} \bigg|_{\widehat{\xi}_{n-1}}, \qquad C_n = \frac{\partial c_n(\xi)}{\partial \xi} \bigg|_{\overline{\xi}_n}, \qquad (6.75)$$

а $k_n,\,\widehat{P}_n,\,\overline{P}_n$ определяются из (6.67), (6.68). Совокупность уравнений (6.74), (6.75), (6.67), (6.68) называется расширенным фильтром Калмана (РФК).

Замечания. 1) Алгоритм ЛФК реализуется на практике существенно проще по сравнению с РФК, так как матричные параметры $k_n, \ \widehat{P}_n$ и \overline{P}_n в алгоритме ЛФК не зависят от наблюдений $\{\eta^n\}$ и, следовательно, могут быть вычислены заранее. В алгоритме РФК A_n и C_n зависят от наблюдений $\{\eta^n\}$, поэтому k_n , \widehat{P}_n и \overline{P}_n необходимо вычислять непосредственно в процессе обработки поступающих наблюдений. Практические расчеты показывают, что оценка РФК обычно несколько точнее оценки ЛФК. Точностные характеристики обеих оценок существенно зависят от величины случайных возмущений в модели (6.69), (6.70) и от характеристик нелинейностей этих моделей. В линейном же случае обе оценки, естественно, совпадают с с.к.-оптимальной оценкой линейного фильтра Калмана.

2) В общем случае оценки ЛФК и РФК не совпадают с условным математическим ожиданием, а матрицы $\{\widehat{P}_n\}$ не равны условным ковариациям ошибок соответствующих оценок. Поэтому реальные точности оценок $\{\widehat{\xi}_n\}$ субоптимальных нелинейных фильтров следует определять методом статистического моделирования на этапе синтеза соответствующих алгоритмов оценивания.

Пример 6.17. Нелинейная динамическая модель наблюдения описывается разностными стохастическими уравнениями

$$\begin{cases} \xi_n = \frac{\xi_{n-1}}{1 + \xi_{n-1}^2} + 0.7 \,\varepsilon_n, & \varepsilon_0 = \gamma, \\ \eta_n = 0.6 \,\xi_n + 0.4 \,\xi_n^2 + 0.2 \,v_n, \end{cases}$$
(6.76)

где $\{\varepsilon_n\}$, $\{v_n\}$ — независимые скалярные стандартные гауссовские белые шумы, γ — стандартная гауссовская СВ, не зависящая от $\{\varepsilon_n\}, \{v_n\}$. Построить линеаризованный и расширенный фильтры Калмана для оценивания СП $\{\xi_n\}$ по наблюдениям $\{\eta_n\}$.

Решение. 1) (Построение ЛФК). Сравнивая (6.76) с (6.69) и (6.70), заключаем, что

$$\begin{cases}
 a_n(\xi) = \frac{\xi}{1+\xi^2}, & u_n = 0, \quad B_n = 0,7, \\
 c_n(\xi) = 0,6 \xi + 0,4 \xi^2, & w_n = 0, \quad D_n = 0,2.
\end{cases}$$
(6.77)

По условию также $m_{\gamma}=0,\,R_{\gamma}=1.$

Опорная траектория $\{\xi_n^{\rm o}\}$ определяется уравнением (6.73), которое с учетом (6.77) имеет вид

$$\xi_n^{\circ} = \frac{\xi_{n-1}^{\circ}}{1 + (\xi_{n-1}^{\circ})^2}, \qquad \xi_0^{\circ} = 0.$$
 (6.78)

Из (6.78) немедленно следует, что $\xi_n^{\rm o}=0,\,n=0,1,2,\,\dots$ Для $a_n(\xi)$ и $c_n(\xi)$ конкретного вида (6.77) следует

$$\frac{da_n(\xi)}{d\xi} = \frac{1-\xi^2}{(1+\xi^2)^2}, \qquad \frac{dc_n(\xi)}{d\xi} = 0.6 + 0.8 \,\xi. \tag{6.79}$$

Отсюда с учетом (6.71), (6.72) для случая $\xi_n^{\rm o} = 0$ получаем

$$A_n = 1, \quad C_n = 0.6, \quad U_n = W_n = 0.$$
 (6.80)

Подставляя (6.80), (6.77) в уравнения ЛФК (6.66)–(6.68), получаем системы уравнений

$$\begin{cases}
\widehat{\xi}_n = \overline{\xi}_n + k_n [\eta_n - 0.6 \, \overline{\xi}_n], & \widehat{\xi}_0 = 0, \\
\overline{\xi}_n = \widehat{\xi}_{n-1},
\end{cases} (6.81)$$

$$k_n = 0.6 \, \overline{P}_n (0.36 \, \overline{P}_n + 0.04)^{-1},$$
 (6.82)

$$\begin{cases}
\hat{P}_n = (1 - 0.6 k_n) \overline{P}_n, & \hat{P}_0 = 1, \\
\overline{P}_n = \hat{P}_{n-1} + 0.49.
\end{cases} (6.83)$$

Исключая из (6.81)–(6.83) вспомогательные переменные $\overline{\xi}_n$ и \overline{P}_n , получаем окончательный вид ЛФК:

$$\begin{cases}
\widehat{\xi}_n = \widehat{\xi}_{n-1} + 15 \,\widehat{P}_n[\eta_n - 0.6 \,\widehat{\xi}_{n-1}], & \widehat{\xi}_0 = 0, \\
\widehat{P}_n = (\widehat{P}_{n-1} + 0.49) (9 \,\widehat{P}_{n-1} + 5.41)^{-1}, & \widehat{P}_0 = 1.
\end{cases} (6.84)$$

2) (Построение РФК). В уравнениях РФК на n-ом шаге полагаем $\xi_{n-1}^{\rm o}=\widehat{\xi}_{n-1},\ \xi_n^{\rm o}=\overline{\xi}_n$. С учетом (6.79) находим

$$A_n = \left(1 - \hat{\xi}_{n-1}^2\right) \left(1 + \hat{\xi}_{n-1}^2\right)^{-2}, \qquad C_n = 0.6 + 0.8 \,\overline{\xi}_n. \tag{6.85}$$

Из (6.74) с учетом $w_n = u_n = 0$ получаем уравнения фильтрации

$$\begin{cases}
\widehat{\xi}_n = \overline{\xi}_n + k_n \left[\eta_n - 0.6 \, \overline{\xi}_n - 0.4 \, \overline{\xi}_n^2 \right], & \widehat{\xi}_0 = 0, \\
\overline{\xi}_n = \widehat{\xi}_{n-1} \left(1 + \widehat{\xi}_{n-1}^2 \right)^{-1},
\end{cases} (6.86)$$

где уравнения для вычисления коэффициента усиления k_n имеют вид

$$\begin{cases} k_n = C_n \overline{P}_n \left(C_n^2 \overline{P}_n + 0.04 \right)^{-1}, \\ \hat{P}_n = (1 - k_n C_n) \overline{P}_n, & \hat{P}_0 = 1, \\ \overline{P}_n = A_n^2 \hat{P}_{n-1} + 0.49, \end{cases}$$
 (6.87)

а A_n и C_n определены соотношениями (6.85).

Сравнивая (6.86) и (6.84) видим, что алгоритм ЛФК дает линейную по наблюдениям оценку $\hat{\xi}_n$, а последовательность $\{\hat{P}_n\}$ — детерминированная, в то время как РФК осуществляет существенно нелинейные преобразования наблюдений, а последовательности $\{\hat{P}_n, \overline{P}_n\}$ и, следовательно, $\{k_n\}$ — стохастические. Таким образом ЛФК дает очень простую и грубую оценку для СП $\{\xi_n\}$, в то время как РФК гораздо более полным образом учитывает нелинейную структуру модели наблюдения (6.76).

В заключение рассмотрим метод условно-оптимальной нелинейной фильтрации (УОНФ), предложенный В.С. Пугачевым [19]. Для построения УОНФ процесса $\{\xi_n\}$ в модели (6.69), (6.70) выбираются две функции:

 $\varphi_n(\xi, u)$ — базовая прогнозирующая функция;

 $\psi_n(\xi,\eta,w)$ — базовая корректирующая функция,

которые могут быть как линейными, так и нелинейными.

Алгоритм фильтрации определяется рекуррентными уравнениями вида «прогноз-коррекция»:

$$\begin{cases}
\widetilde{\xi}_n = F_n \varphi_n(\widehat{\xi}_{n-1}, u_n) + f_n, & \widehat{\xi}_0 = m_{\gamma}, \\
\widehat{\xi}_n = \widetilde{\xi}_n + H_n \psi_n(\widetilde{\xi}_n, \eta_n, w_n) + h_n,
\end{cases} (6.88)$$

где матричные параметры $\{F_n,f_n\}$ и $\{H_n,h_n\}$ выбираются с.к.-оптимальным образом, т. е. так, чтобы

$$\mathbf{M}\left\{|\xi_n - (F_n\widehat{\varphi}_n + f_n)|^2\right\} \leqslant \mathbf{M}\left\{|\xi_n - (F\widehat{\varphi}_n + f)|^2\right\},$$

$$\mathbf{M}\left\{|\xi_n - (\widetilde{\xi}_n + H_n\widehat{\psi}_n + h_n)|^2\right\} \leqslant \mathbf{M}\left\{|\xi_n - (\widetilde{\xi}_n + H\widehat{\psi}_n + h)|^2\right\},$$

где $\widehat{\varphi}_n = \varphi_n(\widehat{\xi}_{n-1}, u_n)$, $\widehat{\psi}_n = \psi_n(\widetilde{\xi}_n, \eta_n, w_n)$, а $\{F, f\}$ и $\{H, h\}$ — произвольные матричные коэффициенты соответствующих размеров.

Из теоремы 14.16 (см. п. 14.7) немедленно следует, что

$$F_n = \mathbf{cov}\{\xi_n, \widehat{\varphi}_n\} \left[\mathbf{cov}\{\widehat{\varphi}_n, \widehat{\varphi}_n\} \right]^{-1}, f_n = \mathbf{M}\{\xi_n\} - F_n \mathbf{M}\{\widehat{\varphi}_n\}; \tag{6.89}$$

$$H_n = \mathbf{cov}\{\xi_n - \widetilde{\xi}_n, \widehat{\psi}_n\} \left[\mathbf{cov}\{\widehat{\psi}_n, \widehat{\psi}_n\} \right]^{-1} h_n = -H_n \mathbf{M}\{\widehat{\psi}_n\}.$$
 (6.90)

Из (6.89), (6.90) следует, что параметры $\{F_n, f_n, H_n, h_n\}$ — неслучайные, т.е. могут быть вычислены заранее (до начала обработки наблюдений).

Оценки $\widetilde{\xi}_n$ и $\widehat{\xi}_n$ — несмещенные по построению, а ковариационные матрицы их ошибок \widetilde{P}_n и \widehat{P}_n определяются аналитически:

$$\left\{ \begin{array}{l} \widetilde{P}_n = \mathbf{cov}\{\xi_n,\xi_n\} - F_n\,\mathbf{cov}\{\widehat{\varphi}_n,\xi_n\}, \\ \widehat{P}_n = \widetilde{P}_n - H_n\,\mathbf{cov}\{\widehat{\psi}_n,\xi_n - \widetilde{\xi}_n\}. \end{array} \right.$$

Для практического вычисления коэффициентов (6.89) проще всего воспользоваться методом статистического моделирования.

Пусть смоделированы N реализаций $\{\widehat{\xi}_{n-1}^{(i)}\}$ оценки УОНФ $\widehat{\xi}_{n-1}$ и N реализаций $\{\xi_n^{(i)}\}$ СП ξ_n . Тогда при $N\gg 1$ можно состоятельно оценить правые части выражений (6.89):

$$\mathbf{M}\{\xi_n\} \approx \overline{\xi}_n = N^{-1} \sum_{i=1}^N \xi_n^{(i)}, \qquad \mathbf{M}\{\widehat{\varphi}_n\} \approx \overline{\varphi}_n = \frac{1}{N} \sum_{i=1}^N \varphi_n(\widehat{\xi}_{n-1}^{(i)}, u_n),$$

$$\mathbf{cov}\{\widehat{\varphi}_n,\widehat{\varphi}_n\} \approx \overline{\mathbf{cov}}\{\widehat{\varphi}_n,\widehat{\varphi}_n\} = \frac{1}{N} \sum_{i=1}^N \varphi_n(\widehat{\xi}_{n-1}^{(i)},u_n) \, \varphi_n^*(\widehat{\xi}_{n-1}^{(i)},u_n) - \overline{\varphi}_n \overline{\varphi}_n^*,$$

$$\mathbf{cov}\{\xi_n,\widehat{\varphi}_n\} \approx \overline{\mathbf{cov}}\{\xi_n,\widehat{\varphi}_n\} = \frac{1}{N} \sum_{i=1}^N \xi_n^{(i)} \varphi_n^*(\widehat{\xi}_{n-1}^{(i)}, u_n) - \overline{\xi}_n \overline{\varphi}_n^*.$$

Теперь, заменяя в (6.89) математическое ожидания и ковариации их выборочными аналогами, получаем оценки \overline{F}_n и \overline{f}_n для F_n и f_n :

$$\overline{F}_n = \overline{\mathbf{cov}}\{\xi_n, \widehat{\varphi}_n\} \left[\overline{\mathbf{cov}}\{\widehat{\varphi}_n, \widehat{\varphi}_n\} \right]^{-1}, \qquad \overline{f}_n = \overline{\xi}_n - \overline{F}_n \overline{\varphi}_n. \tag{6.91}$$

После вычисления \overline{F}_n и \overline{f}_n , мы можем построить набор реализаций прогноза $\{\widetilde{\xi}_n^{(i)}\}$ и базовой коррекции $\{\psi_n(\widetilde{\xi}_n^{(i)},\eta_n^{(i)},w_n)\}$, где $\{\eta_n^{(i)}\}$ — набор реализаций вектора наблюдений η_n , соответствующий реализациям $\{\xi_n^{(i)}\}$:

$$\eta_n^{(i)} = c_n(\xi_n^{(i)}) + w_n + D_n v_n^{(i)}, \qquad i = 1, \dots, N,$$

а $\{v_n^{(i)}\}$ — набор независимых реализаций вектора ошибок наблюдений v_n .

теперь оценки \overline{H}_n и \overline{h}_n для H_n и h_n могут быть вычислены точно так же, как оценки \overline{F}_n и \overline{f}_n . Заметим, что \overline{F}_n , \overline{f}_n , \overline{H}_n и \overline{h}_n сходятся с вероятностью 1 при $N\to\infty$ к точным значениям коэффициентов F_n , f_n , H_n и h_n .

Укажем стандартные способы выбора базовых функций $\varphi_n(\xi,u)$ и $\psi_n(\xi,\eta,w)$:

1) прогноз по уравнению (6.69), описывающему динамику СП $\{\xi_n\}$:

$$\varphi_n(\widehat{\xi}_{n-1}, u_n) = a_n(\widehat{\xi}_{n-1}) + u_n; \tag{6.92}$$

2) коррекция в виде невязки (рассогласования):

$$\psi_n(\widetilde{\xi}_n, \eta_n, w_n) = \eta_n - (c_n(\widetilde{\xi}_n) + w_n); \tag{6.93}$$

3) коррекция в виде преобразованной невязки:

$$\psi_n(\widetilde{\xi}_n, \eta_n, w_n) = k_n \left[\eta_n - \left(c_n(\widetilde{\xi}_n) + w_n \right) \right], \tag{6.94}$$

где
$$k_n = \widetilde{P}_n C_n^* (C_n \widetilde{P}_n C_n^* + D_n D_n^*)^{-1}, \ \widetilde{P}_n = \mathbf{cov} \{ \xi_n - \widetilde{\xi}_n, \xi_n - \widetilde{\xi}_n \}, \ C_n = \frac{\partial c_n(\xi)}{\partial \xi} \bigg|_{\xi = \widetilde{\xi}_n}.$$

Другие возможные способы выбора $\varphi_n(\xi,u)$ и $\psi_n(\xi,\eta,w)$ рассмотрены в [17].

Таблица 6.1

n	$J_n^{(1)}$	$J_{n}^{(2)}$	$J_n^{(3)}$	$J_n^{(2)}/J_n^{(1)}$	$J_n^{(3)}/J_n^{(1)}$
1	0,261	0,563	0,278	$2{,}16$	1,07
2	0,238	0,450	$0,\!257$	1,89	1,08
4	0,224	0,392	0,237	1,75	1,06
6	0,224	0,387	0,238	1,73	1,06
8	0,227	0,387	0,244	1,70	1,07
10	0,239	0,421	0,258	1,76	1,08

Пример 6.18. Для модели (6.76) из примера 6.17 были построены по N=2000 реализаций с.к.-оптимальной оценки $\widehat{\xi}_n^{(1)}$, оценки РФК $\widehat{\xi}_n^{(2)}$ и оценки УОНФ $\widehat{\xi}_n^{(3)}$. Если обозначить соответствующие реализации $\{\widehat{\xi}_n^{(k)}(i)\}$, где $k=1,2,3;\,i=1,\ldots,N$, то реальные точности оценок определяются величинами их выборочных с.к.-погрешностей:

$$J_n^{(k)} = N^{-1} \sum_{i=1}^{N} \left(\xi_n(i) - \widehat{\xi}_n^{(k)}(i) \right)^2, \quad k = 1, 2, 3, \quad n \geqslant 1.$$

Для построения оценки $\widehat{\xi}_n^{(1)}$ использован алгоритм оптимальной нелинейной фильтрации, описанный в п. 6.5, оценка РФК $\widehat{\xi}_n^{(2)}$ вычислялась по формулам (6.74), (6.75), (6.67), (6.68), а оценка УОНФ $\widehat{\xi}_n^{(3)}$ — по формулам (6.88), где функция $\varphi_n(\xi,u)$ имела вид (6.92), а функция $\psi_n(\xi,\eta,w)$ — (6.94). Результаты расчетов приведены в табл. 6.1.

Полученные результаты показывают, что оценка УОНФ по точности практически не уступает с.к.-оптимальной оценке и существенно точнее оценки РФК. Заметим также, что объем расчетов, требуемый для построения оценки $\widehat{\xi}_n^{(1)}$, значительно больше, чем для построения как $\widehat{\xi}_n^{(2)}$, так и $\widehat{\xi}_n^{(3)}$.

6.7. Задачи для самостоятельного решения.

1. СП $\xi = \{\xi_n\}$ удовлетворяет уравнению авторегрессии

$$\xi_n - 0.8 \, \xi_{n-1} = \varepsilon_n, \quad n \in \mathbb{Z},$$

где $\{\varepsilon_n\}$ — стационарный гауссовский белый шум с параметрами $m_\varepsilon=0,2$ и $D_\varepsilon=0,36$. Вычислить $\mathbf{P}\{0\leqslant \xi_n\leqslant 2\}$.

Ответ. $\mathbf{P}\{0 \leqslant \xi_n \leqslant 2\} \approx 0,683.$

2. Спектральная плотность ССП $\xi = \{\xi_n\}$ имеет вид

$$f_{\xi}(\lambda) = 1.25 + \cos \lambda.$$

Найти разностное стохастическое уравнение, которому удовлетворяет ξ . У казание. Факторизовать спектральную плотность (см. пример 6.7). Ответ. $\xi_n=\varepsilon_n+0,5\,\varepsilon_{n-1},$ где $\{\varepsilon_n\}$ — белый шум с дисперсией $D_\varepsilon=2\pi$.

3. АР-последовательность $\xi = \{\xi_n\}$ удовлетворяет уравнению

$$\xi_n + 0.7 \xi_{n-1} + 0.5 \xi_{n-2} - 0.3 \xi_{n-3} = \varepsilon_n, \quad n \in \mathbb{Z},$$

где $\{\varepsilon_n\}$ — белый шум с дисперсией $D_\varepsilon=1$. Вычислить D_ξ . О т в е т. $D_\xi \approx 3.876$.

4. Пусть p-мерная СП $\xi = \{\xi_n\}$ удовлетворяет разностному стохастическому уравнению

$$\xi_n = A_n \xi_{n-1} + B_n \varepsilon_n, \quad n \in \mathbb{Z},$$

где $\{A_n,B_n\}$ — неслучайные матрицы, а $\{\varepsilon_n\}$ — m-мерный дискретный белый шум. Доказать, что ξ — марковская СП.

5. В условиях предыдущей задачи СП ξ имеет начало: $\xi_0=\eta$. Показать, что ξ — марковская, если η не зависит от $\{\varepsilon_n\},\ n\geqslant 1$.

6. Пусть $\{\xi_n\}$ — гауссовская АР-последовательность порядка p=2. Доказать, что ξ_n не обладает марковским свойством.

У казание. Показать, что $\mathbf{M}\{\xi_n \mid \xi_{n-1}\} \neq \mathbf{M}\{\xi_n \mid \xi_{n-1}, \xi_{n-2}\}.$

7. Доказать, что для АРСС-последовательности порядка (p,q), где $p\geqslant 2,\ p>q$ всегда найдется p-мерная марковская СП $\{\eta_n\}$, такая, что ее первая компонента совпадает с ξ_n .

Указание. Использовать результат задачи 4.

9 Б.М. Миллер и А.Р. Панков

8. Пусть $\xi = \{\xi_n\}$ — APCC-последовательность порядка (1,1):

$$\xi_n - b\,\xi_{n-1} = \varepsilon_n - a\,\varepsilon_{n-1}, \quad n \in \mathbb{Z},$$

где $|b|<1,\,\{\varepsilon_n\}$ — центрированный гауссовский белый шум с $D_{\varepsilon}>0$. Найти представление для ξ в виде бесконечного скользящего среднего. Пользуясь этим представлением, найти закон распределения ξ_n при каждом $n\in\mathbb{Z}$.

Ответ.
$$\xi_n = \varepsilon_n + \sum_{k=1}^{\infty} \alpha_k \varepsilon_{n-k}$$
, где $\alpha_k = (b-a)b^{k-1}$, $\xi_n \sim \mathcal{N}(0; D_{\xi})$,

$$D_{\xi} = D_{\varepsilon} \frac{1 - 2ab + a^2}{1 - b^2}.$$

9. Пусть СП $\{\xi_n\}$ удовлетворяет асимптотически устойчивому уравнению авторегрессии порядка $p \geqslant 1$:

$$\xi_n + \sum_{k=1}^p b_k \xi_{n-k} = \varepsilon_n, \quad n \in \mathbb{Z},$$

где $\{\varepsilon_n\}$ — стационарный белый шум с параметрами m_ε и D_ε . Доказать, что с.к.-оптимальный прогноз $\overline{\xi}_n$ для $\xi_n,\ n\geqslant 1,$ по наблюдениям $\xi^0=$ $=\{\xi_{0},\xi_{-1},\dots\}$ удовлетворяет разностному уравнению

$$\overline{\xi}_n + \sum_{k=1}^p b_k \widetilde{\xi}_{n-k} = m_{\varepsilon}, \quad n \geqslant 1,$$

где $\widetilde{\xi}_j=\xi_j,$ если $j\leqslant 0,$ и $\widetilde{\xi}_j=\overline{\xi}_j,$ если j>0. Указание. Вычислить $\mathbf{M}\{\xi_n\mid \xi^0\}.$

10. Показать, что в уравнениях фильтра Калмана вектор $\overline{\xi}_n$ является с.к.-оптимальным прогнозом для ξ_n по наблюдениям $\eta^{n-1},$ а \overline{P}_n — ковариационная матрица ошибки этого прогноза.

Указание. Воспользоваться теоремой о нормальной корреляции.

11. Пусть случайный скалярный параметр θ измеряется по схеме

$$\eta_n = c \,\theta + v_n, \quad n = 1, 2, \dots,$$

где $\{v_n\}$ — стационарный центрированный белый шум с $D_v>0$. Доказать, что если $c \neq 0$, то оценка $\widehat{\theta}_n$ параметра θ , полученная с помощью фильтра Калмана (см. пример 6.13), с.к.-состоятельна, т.е. $\mathbf{M}\{(\theta - \widehat{\theta}_n)^2\} \to 0$ при $n \to \infty$.

Указание. Доказать, что $\widehat{P}_n \to 0$ при $n \to \infty$ (см. уравнение (6.43)).

12. Пусть $\{\xi_n, \eta_n\}$ — частично наблюдаемая гауссовская последовательность, заданная моделью наблюдения Калмана:

$$\xi_n = a \, \xi_{n-1} + b \, \varepsilon_n, \qquad \eta_n = A \, \xi_n + B \, v_n,$$

где $\{\varepsilon_n,v_n\}$ — скалярные стандартные гауссовские независимые белые шумы. Показать, что если $b \neq 0, A \neq 0, B \neq 0$, то $\widehat{P}_n \to \widehat{P}$ при $n \to \infty$, причем предельная дисперсия \hat{P} ошибки фильтрации является положительным корнем уравнения $a^2A^2\hat{P}^2+[b^2A^2+(1-a^2)B^2]\hat{P}-b^2B^2=0.$

§ 7. Мартингалы с дискретным временем

7.1. Основные определения. Будем всюду далее предполагать, что на вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$ задан неубывающий $nomo\kappa \ \sigma$ -алгебр $\{\mathcal{F}_n\},\ n\geqslant 0$, т. е. семейство σ -алгебр, такое, что $\mathcal{F}_0\subseteq$ $\subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}$. Например, если $\{\xi_n\},\ n\geqslant 0$ — набор случайных величин, заданных на $\{\Omega, \mathcal{F}, \mathbf{P}\}$, а $\mathcal{F}_n^{\xi} = \sigma\{\xi_0, \dots, \xi_n\}$ — σ -алгебра, порожденная конечным набором $\{\xi_k,\ k=0,\ldots,n\}$, то $\mathcal{F}^\xi_{n-1}\subseteq\mathcal{F}^\xi_n$ по построению и, следовательно, $\{\mathcal{F}_n^{\xi}\}$, $n \geqslant 0$ — поток σ -алгебр.

Определение 7.1. Пусть $\{X_n, n \geqslant 0\}$ — последовательность вещественных случайных величин, определенных на $\{\Omega, \mathcal{F}, \mathbf{P}\}$. Если при каждом $n\geqslant 0$ случайная величина X_n является \mathcal{F}_n -измеримой, то $\{X_n, \mathcal{F}_n\}, \ n\geqslant 0,$ называется стохастической последовательностью.

Определение 7.2. Если при каждом $n\geqslant 1$ случайная величина X_n является \mathcal{F}_{n-1} -измеримой, то последовательность $\{X_n,\mathcal{F}_{n-1}\}$ называется предсказуемой. Если выполнено также условие монотонности $X_{n-1} \leqslant X_n$ (**P**-п.н.), то $\{X_n, \mathcal{F}_{n-1}\}$ называется неубывающей предсказуемой последовательностью.

Замечание. Смысл термина «предсказуемость» становится понятным, если в качестве \mathcal{F}_n выбраны σ -алгебры $\mathcal{F}_n^X = \sigma\{X_0,\dots,X_n\}$. Предсказуемость означает тогда, что случайная величина X_n есть некоторая борелевская функция величин $\{X_0, \ldots, X_{n-1}\}$ и, следовательно, может быть однозначно определена (предсказана) по значениям этих случайных величин.

O пределение 7.3. Стохастическая последовательность $\{X_n, \mathcal{F}_n\}$, удовлетворяющая условию $M\{|X_n|\} < \infty$, называется:

- а) мартингалом, если $\mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\} = X_n \ (\mathbf{P}\text{-п.н.});$ 6) субмартингалом, если $\mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\} \geqslant X_n \ (\mathbf{P}\text{-п.н.});$ в) супермартингалом, если $\{-X_n, \mathcal{F}_n\}$ субмартингал.

Смысл мартингального свойства а) можно пояснить с позиций теории прогнозирования случайных последовательностей.

 Π ример 7.1. Пусть $\{X_n,\mathcal{F}_n\}$ — мартингал $(\mathcal{F}_n=\sigma\{X_0,\ldots,X_n\})$, причем $\mathbf{M}\big\{|X_n|^2\big\}<\infty$. Найти наилучший среднеквадратический прогноз для X_{n+1} по наблюдениям $\{X_0, \ldots, X_n\}$.

Решение. Обозначим через \widehat{X}_{n+1} с.к.-оптимальный прогноз для X_{n+1} по наблюдениям $\{X_0,\ldots,X_n\}$. Тогда для любого прогноза $X_{n+1} = \varphi_n(X_0, \dots, X_n)$, построенного по наблюдениям $\{X_0, \dots, X_n\}$ с помощью преобразования $\varphi_n(\cdot)$, в силу определения 7.3 выполнено

$$\mathbf{M}\{|X_{n+1} - \widehat{X}_{n+1}|^2\} \leq \mathbf{M}\{|X_{n+1} - \widetilde{X}_{n+1}|^2\}.$$

Так как $\mathbf{M}\{|X_{n+1}|^2\}<\infty$, из теоремы 6.2 и определения условного математического ожидания относительно случайного вектора (см. п. 14.5) получаем

$$\widehat{X}_{n+1} = \mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\} = X_n \quad (\mathbf{P}\text{-}\Pi.H.).$$

Итак, с.к.-оптимальный прогноз (на один шаг) для мартингала $\{X_n, \mathcal{F}_n\}$ таков: на (n+1)-м шаге ничего не изменится.

С учетом результата, сформулированного в задаче 3, с.к.-оптимальный прогноз на $m\geqslant 1$ шагов вперед имеет вид

$$\widehat{X}_{n+m} = \mathbf{M}\{X_{n+m} \mid \mathcal{F}_n\} = X_n \quad (\mathbf{P}\text{-}\Pi.H.).$$

Если $\{X_n, \mathcal{F}_n\}$ — субмартингал, то нетрудно проверить, что

$$\widehat{X}_{n+1} = \mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\} \geqslant X_n \quad (\mathbf{P}\text{-}\Pi.H.).$$

Наконец, если $\{X_n, \mathcal{F}_n\}$ — супермартингал, то в последнем соотношении знак неравенства изменится на противоположный.

Замечания. 1) Полученный в примере 7.1 результат имеет следующую экономическую интерпретацию. Пусть $\{X_n, \mathcal{F}_n\}$ описывает эволюцию некоторого финансового индекса, в увеличении которого мы заинтересованы (например, эффективность финансового рынка или текущая доходность нашего инвестиционного портфеля). Если $\{X_n, \mathcal{F}_n\}$ — мартингал, то имеет место ситуация «стабильности». Если же $\{X_n, \mathcal{F}_n\}$ — субмартингал (супермартингал), то имеет место ситуация «развития» («падения» или «рецессии»).

2) Из определения 7.3 следует, что всякий мартингал является одновременно как субмартингалом, так и супермартингалом. Если $X = \{X_n, \mathcal{F}_n\}$ является мартингалом или субмартингалом, то по свойствам условного математического ожидания для мартингала

$$\mathbf{M}\{X_n\} = \mathbf{M}\{\mathbf{M}\{X_n \mid \mathcal{F}_0\}\} = \mathbf{M}\{X_0\},$$

и для субмартингала

$$\mathbf{M}\{X_n\} = \mathbf{M}\{\mathbf{M}\{X_n \mid \mathcal{F}_0\}\} \geqslant \mathbf{M}\{X_0\}.$$

Приведем ряд простых примеров стохастических последовательностей, образующих мартингалы и субмартингалы (необходимые далее свойства условного математического ожидания описаны в п. 14.5).

Пример 7.2. Пусть $\{\xi_n, n \geqslant 0\}$ — последовательность независимых случайных величин, $\mathcal{F}_n = \sigma\{\xi_0, \xi_1, \dots, \xi_n\}$, $X_n = \sum_{k=0}^n \xi_k$. Показать, что $\{X_n, \mathcal{F}_n\}$ является мартингалом (субмартингалом), если $\mathbf{M}\{\xi_k\} = 0$ ($\mathbf{M}\{\xi_k\} \geqslant 0$).

Решение. Из условия $\mathbf{M}\{|\xi_k|\}<\infty$ и свойств математического ожидания (см. п. 14.3) следует

$$\mathbf{M}\{|X_n|\} = \mathbf{M}\left\{\left|\sum_{k=0}^n \xi_k\right|\right\} \leqslant \mathbf{M}\left\{\sum_{k=0}^n |\xi_k|\right\} = \sum_{k=0}^n \mathbf{M}\{|\xi_k|\} < \infty.$$

Покажем, что $\{X_n, \mathcal{F}_n\}$ — мартингал при условии $\mathbf{M}\{\xi_k\} = 0$. Заметим, что по условию CB X_n измерима относительно \mathcal{F}_n , а ξ_{n+1} от \mathcal{F}_n не зависит, поэтому с учетом свойств условного математического ожидания (см. п. 14.5) получаем:

$$\mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\} = \mathbf{M}\{X_n + \xi_{n+1} \mid \mathcal{F}_n\} =$$

$$= \mathbf{M}\{X_n \mid \mathcal{F}_n\} + \mathbf{M}\{\xi_{n+1} \mid \mathcal{F}_n\} = X_n + \mathbf{M}\{\xi_{n+1}\}.$$

Отсюда $\mathbf{M}\{X_{n+1}\mid \mathcal{F}_n\}=X_n$, если $\mathbf{M}\{\xi_{n+1}\}=0$, т. е. $\{X_n,\mathcal{F}_n\}$ — мартингал. Кроме того, $\mathbf{M}\{X_{n+1}\mid \mathcal{F}_n\}\geqslant X_n$, если $\mathbf{M}\{\xi_{n+1}\}\geqslant 0$, т. е. $\{X_n,\mathcal{F}_n\}$ — субмартингал. \blacksquare

Пример 7.3. Пусть
$$X_n = \prod_{k=0}^n \xi_k$$
, где $\{\xi_n\}$ и $\{\mathcal{F}_n\}$ определены

в примере 7.2. Показать, что при условии $\mathbf{M}\{\xi_k\}=1$ последовательность $\{X_n,\mathcal{F}_n\}$ образует мартингал, а при условии $\mathbf{M}\{\xi_k\}\geqslant 1$ — субмартингал, если дополнительно предположить, что $\xi_n\geqslant 0$ (**P**-п.н.).

 $\mathrm{P}\,\mathrm{e}\,\mathrm{m}\,\mathrm{e}\,\mathrm{h}\,\mathrm{u}\,\mathrm{e}.$ $\mathrm{B}\,\mathrm{c}\mathrm{u}$ лу независимости $\mathrm{CB}\,\{\xi_k\}$ и $\mathbf{M}\{|\xi_k|\}<\infty$ находим

$$\mathbf{M}\{|X_n|\} = \mathbf{M}\Big\{\prod_{k=0}^{n} |\xi_n|\Big\} = \prod_{k=0}^{n} \mathbf{M}\{|\xi_k|\} < \infty.$$

Если $\mathbf{M}\{\xi_{n+1}\}=1$, то

$$\mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\} = \mathbf{M}\{X_n\xi_{n+1} \mid \mathcal{F}_n\} =$$

$$= X_n \mathbf{M} \{ \xi_{n+1} \mid \mathcal{F}_n \} = X_n \mathbf{M} \{ \xi_{n+1} \} = X_n, \quad (7.1)$$

где второе равенство получено с учетом \mathcal{F}_n -измеримости СВ X_n , а третье — в силу независимости ξ_{n+1} от σ -алгебры \mathcal{F}_n . Тем самым, $\{X_n,\mathcal{F}_n\}$ образует мартингал.

Если же $\xi_n\geqslant 0$ (**P**-п.н.) и $\mathbf{M}\{\xi_{n+1}\}\geqslant 1$, то $X_n\geqslant 0$ (**P**-п.н.) и $\mathbf{M}\{X_{n+1}\mid \mathcal{F}_n\}\geqslant X_n$ в силу (7.1). Следовательно, в этом случае $\{X_n,\mathcal{F}_n\}$ — субмартингал. \blacksquare

Пример 7.4. Пусть ξ — случайная величина с $\mathbf{M}\{|\xi|\}<\infty$ и $\{\mathcal{F}_n\}$ — некоторый поток σ -алгебр. Пусть $X_n=\mathbf{M}\{\xi\mid\mathcal{F}_n\}$. Доказать, что $\{X_n,\mathcal{F}_n\}$ — мартингал.

Решение. Заметим, что

$$\mathbf{M}\{|X_n|\} = \mathbf{M}\{|\mathbf{M}\{\xi \mid \mathcal{F}_n\}|\} \leqslant \mathbf{M}\{\mathbf{M}\{|\xi| \mid \mathcal{F}_n\}\} = \mathbf{M}\{|\xi|\} < \infty.$$

Теперь в силу $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ и свойства 8 из п. 14.5 находим

$$\mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\} = \mathbf{M}\{\mathbf{M}\{\xi \mid \mathcal{F}_{n+1}\} \mid \mathcal{F}_n\} = \mathbf{M}\{\xi \mid \mathcal{F}_n\} = X_n. \quad \blacksquare$$

Пример 7.5. Пусть $X = \{X_n, \mathcal{F}_n\}$ — мартингал, а g(x) — выпуклая вниз функция, такая, что $\mathbf{M}\{|g(X_n)|\} < \infty$. Доказать, что последовательность $\{g(X_n), \mathcal{F}_n\}$ образует субмартингал.

Решение. Пусть $Y_n = g(X_n)$, тогда $\mathbf{M}\{|Y_n|\} < \infty$ по условию. Воспользуемся неравенством Иенсена $\mathbf{M}\{g(\xi) \mid \mathcal{F}_n\} \geqslant g(\mathbf{M}\{\xi \mid \mathcal{F}_n\})$, верным для выпуклой вниз функции $g(\cdot)$ и CB ξ с $\mathbf{M}\{|\xi|\} < \infty$:

$$\mathbf{M}\{Y_{n+1} \mid \mathcal{F}_n\} = \mathbf{M}\{g(X_{n+1}) \mid \mathcal{F}_n\} \geqslant g(\mathbf{M}\{X_{n+1} \mid \mathcal{F}_n\}) = g(X_n) = Y_n,$$

т. е. $\{Y_n, \mathcal{F}_n\}$ — субмартингал. \blacksquare

Замечание. Пример 7.5 показывает важный способ формирования субмартингала из некоторого мартингала. Например, если $\{X_n,\mathcal{F}_n\}$ — мартингал, а $Y_n=X_n^2$, то $\{Y_n,\mathcal{F}_n\}$ — субмартингал, так как $g(x)=x^2$ — выпуклая вниз функция. Естественно, предполагается, что $\mathbf{M}\{X_n^2\}<\infty$.

Пример 7.6. Рассмотрим последовательность независимых случайных величин $\{\eta_n\},\ n\geqslant 1$, принимающих значения $\{-1,1\}$ с вероятностями $\mathbf{P}\{\eta_n=1\}=p,\ \mathbf{P}\{\eta_n=-1\}=q,\ \text{где }q=1-p.$ Эту последовательность можно рассматривать как результаты игры двух лиц, где $\eta_n=1$ трактуется как выигрыш первого игрока в n-й партии, а $\eta_n=-1$ — как проигрыш. Заметим, что $\mathbf{M}\{\eta_n\}=p-q$ при любых n. Если последовательность ставок первого игрока есть $\{V_k\}$, то его общий выигрыш X_n после n-й партии равен

$$X_n = \sum_{k=1}^n \eta_k V_k = X_{n-1} + \eta_n V_n, \quad X_0 = 0.$$

Поскольку игроку неизвестны результаты будущих партий, то его стратегия может базироваться только на результатах прошедших партий, что означает

$$V_n = \varphi_n(\eta_1, \dots, \eta_{n-1}) \geqslant 0,$$

где $\varphi_n(\cdot)$ — некоторая неслучайная борелевская функция. Таким образом, случайная величина V_n является измеримой относительно $\mathcal{F}_{n-1}^{\eta} = \sigma\{\eta_1,\ldots,\eta_{n-1}\}$. Рассмотрим поведение последовательности $X = \{X_n, \mathcal{F}_n^{\eta}\}$ с точки зрения определения 7.3. Тогда

$$\mathbf{M}\left\{X_n \mid \mathcal{F}_{n-1}^{\eta}\right\} = X_{n-1} + V_n \,\mathbf{M}\left\{\eta_n\right\},\,$$

и последовательность X образует мартингал, если $\mathbf{M}\{\eta_n\}=p-q=0$, субмартингал, если p-q>0, и супермартингал, если p-q<0.

Пример 7.7. Пусть $p_n^1(x_1,\ldots,x_n)-n$ -мерная плотность распределения случайной последовательности $\xi=\{\xi_n,\,n\geqslant 1\}$. Доказать, что если $p_n^0(x_1,\ldots,x_n)$ — также n-мерная плотность и $p_n^1(x_1,\ldots,x_n)>0$, то последовательность

$$\rho_n = \frac{p_n^0(\xi_1, \dots, \xi_n)}{p_n^1(\xi_1, \dots, \xi_n)}$$

является мартингалом относительно потока $\mathcal{F}_n^{\xi} = \sigma\{\xi_1, \dots, \xi_n\}.$

Решение.
$$\mathbf{M}\{\rho_n\} = \int\limits_{\mathbb{R}^n} p_n^0(x_1, \dots, x_n) \, dx_1 \dots dx_n = 1 < \infty$$
. Если

 $p_{\xi_{n+1}}(y\mid x_1,\dots,x_n)$ — условная плотность случайной величины ξ_{n+1} при условии, что $\xi_1=x_1,\dots,\xi_n=x_n$, то

$$\begin{split} \mathbf{M}\{\rho_{n+1} \mid \xi_1 &= x_1, \dots, \xi_n = x_n\} = \\ &= \int_{\mathbb{R}^1} \frac{p_{n+1}^0(x_1, \dots, x_n, y)}{p_{n+1}^1(x_1, \dots, x_n, y)} \cdot p_{\xi_{n+1}}(y \mid x_1, \dots, x_n) \, dy = \\ &= \int_{\mathbb{R}^1} \frac{p_{n+1}^0(x_1, \dots, x_n, y)}{p_{n+1}^1(x_1, \dots, x_n, y)} \cdot \frac{p_{n+1}^1(x_1, \dots, x_n, y)}{p_n^1(x_1, \dots, x_n)} \, dy = \\ &= \int_{\mathbb{R}^1} \frac{p_{n+1}^0(x_1, \dots, x_n, y)}{p_n^1(x_1, \dots, x_n)} \, dy = \frac{p_n^0(x_1, \dots, x_n)}{p_n^1(x_1, \dots, x_n)}. \end{split}$$

Следовательно, $\mathbf{M}\left\{\rho_{n+1}\mid\mathcal{F}_n^{\xi}\right\}=\rho_n$, т. е. последовательность $\left\{\rho_n,\mathcal{F}_n^{\xi}\right\}$ образует мартингал. С другой стороны, поскольку в силу определения

$$\mathcal{G}_n = \sigma\{\rho_1, \ldots, \rho_n\} \subseteq \sigma\{\xi_1, \ldots, \xi_n\} = \mathcal{F}_n^{\xi},$$

получаем

$$\mathbf{M}\{\rho_{n+1} \mid \mathcal{G}_n\} = \mathbf{M}\{\mathbf{M}\{\rho_{n+1} \mid \mathcal{F}_n^{\xi}\} \mid \mathcal{G}_n\} = \mathbf{M}\{\rho_n \mid \mathcal{G}_n\} = \rho_n.$$

Таким образом, последовательность $\{\rho_n, \mathcal{G}_n\}$ — также мартингал. \blacksquare

Замечание. Величина ρ_n называется отношением правдоподобия. Вычисление отношения правдоподобия используется в статистике при решении задачи различения гипотез. В данном случае рассматривается ситуация различения гипотез о совместном распределении совокупности случайных величин $\{\xi_1,\ldots,\xi_n\}$, т.е. задача о выборе $p_n^0(\cdot)$ или $p_n^1(\cdot)$ в качестве истинной плотности распределения набора $\{\xi_1,\ldots,\xi_n\}$.

Структура произвольного субмартингала описывается следующей теоремой.

Теорема 7.1. Пусть $X = \{X_n, \mathcal{F}_n\}$ — субмартингал. Тогда существуют мартингал $m = \{m_n, \mathcal{F}_n\}$ и неубывающая предсказуемая последовательность $A = \{A_n, \mathcal{F}_{n-1}\}$, такие, что для любого $n \geqslant 0$ справедливо разложение

$$X_n = m_n + A_n \quad (\mathbf{P}\text{-}\Pi.H.). \tag{7.2}$$

Замечание. Формула (7.2) называется разложением Дуба для субмартингала. Из доказательства теоремы 7.1 вытекает, что последовательности $\{m_n\}$ и $\{A_n\}$ имеют вид

$$m_n = X_0 + \sum_{j=0}^{n-1} (X_{j+1} - \mathbf{M}\{X_{j+1} \mid \mathcal{F}_j\}),$$
 (7.3)

$$A_n = \sum_{j=0}^{n-1} (\mathbf{M}\{X_{j+1} \mid \mathcal{F}_j\} - X_j), \quad A_0 = 0.$$
 (7.4)

Определение 7.4. Последовательность $A = \{A_n, \mathcal{F}_{n-1}\}$ в (7.2) называется компенсатором субмартингала X.

$$X_n^2 = m_n + \langle X \rangle_n \,. \tag{7.5}$$

Определение 7.5. Последовательность $\langle X \rangle$, определяемая из разложения (7.5), называется $\kappa badpamuчeckoŭ$ характеристикой мартингала X.

Из формулы (7.4) следует (см. задачу 6), что

$$\langle X \rangle_n = \sum_{j=0}^{n-1} \mathbf{M} \{ (X_{j+1} - X_j)^2 \mid \mathcal{F}_j \},$$
 (7.6)

и для всех $l \leqslant k$

$$\mathbf{M}\{(X_k - X_l)^2 \mid \mathcal{F}_l\} = \mathbf{M}\{X_k^2 - X_l^2 \mid \mathcal{F}_l\} = \mathbf{M}\{\langle X \rangle_k - \langle X \rangle_l \mid \mathcal{F}_l\}.$$
 (7.7)

Если $X_0 = 0$ (**Р**-п.н.), то

$$\mathbf{M}\left\{X_k^2\right\} = \mathbf{M}\left\{\left\langle X\right\rangle_k\right\}. \tag{7.8}$$

Пример 7.8. Пусть $X_n = \sum_{k=1}^n \xi_k$ и $\mathcal{F}_n = \sigma\{\xi_1, \xi_2, \dots, \xi_n\}$, где

 $\{\xi_n,\ n\geqslant 1\}$ — последовательность независимых случайных величин с $\mathbf{M}\{\xi_n\}=0$ и $\mathbf{M}\{\xi_n^2\}<\infty$. Доказать, что стохастическая последовательность $X=\{X_n,\mathcal{F}_n\}$ — мартингал с квадратической характеристикой

$$\langle X \rangle_n = \sum_{k=1}^n \mathbf{D} \{ \xi_k \}.$$
 (7.9)

Решение. Мы можем сразу получить ответ, воспользовавшись формулой (7.6). Однако мы дадим полное решение, основываясь на теореме 7.1, чтобы продемонстрировать технику работы с условным математическим ожиданием.

Пусть $T_n=X_n^2$, тогда в силу результата примера 7.5 $\{T_n,\mathcal{F}_n\}$ — субмартингал. По теореме 7.1 для T_n справедливо разложение Дуба: $T_n=m_n+A_n$, где $A_n=\langle X\rangle_n$ — квадратическая характеристика мартингала $\{X_n,\mathcal{F}_n\}$. Вычислим A_n по формуле (7.4) с учетом $\xi_0=0$:

$$A_n = \sum_{k=0}^{n-1} (\mathbf{M} \{ T_{k+1} \mid \mathcal{F}_k \} - T_k) = \sum_{k=0}^{n-1} \mathbf{M} \{ T_{k+1} - T_k \mid \mathcal{F}_k \}, \quad n \geqslant 1.$$

Для произвольного $k\geqslant 0$ имеем:

$$T_{k+1} - T_k = \left(\sum_{i=1}^{k+1} \xi_i\right)^2 - \left(\sum_{i=1}^{k} \xi_i\right)^2 = \left(X_k + \xi_{k+1}\right)^2 - X_k^2 = 2X_k \xi_{k+1} + \xi_{k+1}^2.$$

Поэтому

$$\mathbf{M}\{T_{k+1} - T_k \mid \mathcal{F}_k\} = \mathbf{M}\{2X_k\xi_{k+1} \mid \mathcal{F}_k\} + \mathbf{M}\{\xi_{k+1}^2 \mid \mathcal{F}_k\} =$$

$$= 2X_k\mathbf{M}\{\xi_{k+1}\} + \mathbf{M}\{\xi_{k+1}^2\} = \mathbf{D}\{\xi_{k+1}\},$$

где учтено, что X_k измерима относительно \mathcal{F}_k , а ξ_{k+1} не зависит от \mathcal{F}_k , причем $\mathbf{M}\{\xi_{k+1}^2\}=0$ и $\mathbf{M}\{\xi_{k+1}^2\}=\mathbf{D}\{\xi_{k+1}\}$. Итак,

$$A_n = \sum_{k=0}^{n-1} \mathbf{D}\{\xi_{k+1}\} = \sum_{k=1}^n \mathbf{D}\{\xi_k\} = \langle X \rangle_n.$$

Таким образом, $\langle X \rangle_n = \mathbf{M} \big\{ X_n^2 \big\} = \mathbf{D} \{ X_n \}$, причем квадратическая характеристика в данном случае оказалась детерминированной последовательностью. \blacksquare

7.2. Марковские моменты. Случайная замена времени в мартингале. В задачах теории случайных процессов важное значение имеет понятие марковского момента или момента остановки. Фактически, марковский момент соответствует моменту времени первого появления некоторого случайного события, причем определить, произошло оно или нет, можно по наблюдениям предыстории случайного процесса. Далее будем предполагать, что на вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$ задан поток σ -алгебр $\{\mathcal{F}_n\}, \, \mathcal{F}_n \subseteq \mathcal{F}$.

О пределение 7.6. СВ τ , заданная на $\{\Omega, \mathcal{F}, \mathbf{P}\}$ и принимающая значения из множества $\{0, 1, \dots, \infty\}$, называется марковским моментом (относительно $\{\mathcal{F}_n\}$), если для любого $n \geqslant 0$

$$\{\tau=n\}\in\mathcal{F}_n.$$

Если $\mathbf{P}\{\tau<\infty\}=1$, то марковский момент τ называется моментом остановки.

Замечание. Можно показать, что данное определение эквивалентно следующему:

$$\{\tau \leqslant n\} \in \mathcal{F}_n \quad \forall n \geqslant 0.$$

О пределение 7.7. Значение случайной последовательности $\{X_n\}$ в случайный момент времени τ определяется как

$$X_{\tau} = \sum_{n=0}^{\infty} X_n I\{\tau = n\},\,$$

где $I\{\tau=n\}$ — индикатор события $\{\tau=n\}$.

Заметим, что X_{τ} является случайной величиной. Действительно, для любого $B\in\mathcal{B}(\mathbb{R}^1)$

$$\{X_{\tau} \in B\} = \bigcup_{n=0}^{\infty} \{X_n \in B\} \cap \{\tau = n\} \in \mathcal{F}.$$

Процедура, описанная в определении 7.7, называется случайной заменой времени.

Рассмотрим следующий типичный пример марковского момента. Пример 7.9. Пусть $X = \{X_n, \mathcal{F}_n\}$ — стохастическая последовательность, множество $B \in \mathcal{B}(\mathbb{R}^1)$ и τ — момент первого попадания последовательности в множество B, т. е.

$$\tau = \inf\{n \geqslant 0 \colon X_n \in B\},\$$

причем, если $X_n \notin B$ для всех $n \geqslant 0$, то полагаем $\tau = \infty$. Показать, что случайная величина τ является марковским моментом.

Решение. Для любого $n \geqslant 0$

$$\{\tau = n\} = \bigcap_{k=0}^{n-1} \{X_k \notin B\} \cap \{X_n \in B\} \in \mathcal{F}_n,$$

что и доказывает требуемое утверждение.

Множество марковских моментов является замкнутым относительно некоторых простых операций.

Пример 7.10. Показать, что если τ и σ — два марковских момента (относительно потока $\{\mathcal{F}_n\}$), то $\tau + \sigma$, $\min(\tau, \sigma)$ и $\max(\tau, \sigma)$ также являются марковскими моментами.

 \mathbf{P} ешение. Для любого $n\geqslant 0$

$$\{\min(\tau,\sigma) \leqslant n\} = \{\tau \leqslant n\} \cup \{\sigma \leqslant n\} \in \mathcal{F}_n$$

так как $\{\tau\leqslant n\}\in\mathcal{F}_n,\,\{\sigma\leqslant n\}\in\mathcal{F}_n,\,$ а \mathcal{F}_n замкнута относительно операции конечного или счетного объединения (см. п. 13.1). Аналогично,

$$\{\max(\tau,\sigma) \leqslant n\} = \{\tau \leqslant n\} \cap \{\sigma \leqslant n\} \in \mathcal{F}_n;$$
$$\{\tau + \sigma \leqslant n\} = \bigcup_{\substack{k,\ l \geqslant 0 \\ k+l \leqslant n}} \{\tau = k\} \cap \{\sigma = l\} \in \mathcal{F}_n. \quad \blacksquare$$

В п. 7.1 отмечено, что для всякого мартингала $\mathbf{M}\{X_n\} = \mathbf{M}\{X_0\}$. Если же заменить детерминированный момент времени n на некоторый случайный момент τ , то указанное равенство может нарушиться.

Пример 7.11. Рассмотрим пример 7.6, в котором игрок использует следующую стратегию игры: величина ставки V_n выбирается по правилу

$$V_n = \left\{ egin{array}{ll} 2^{n-1}, & ext{если} & \eta_1 = \eta_2 = \ldots = \eta_{n-1} = -1, \\ 0 & ext{в остальных случаях.} \end{array}
ight.$$

Это означает, что он удваивает ставки, начиная со ставки $V_1=1,$ и прекращает игру после первого выигрыша. Если $\eta_1=\eta_2=\ldots=\eta_n=$ = -1, то

$$X_n = \sum_{k=1}^n \eta_n V_n = \sum_{k=1}^n (-2^{k-1}) = 1 - 2^n.$$

Однако если $\eta_{n+1} = 1$, то

$$X_{n+1} = X_n + V_{n+1} = (1 - 2^n) + 2^n = 1.$$

Пусть $\tau = \inf\{n \geqslant 1: X_n = 1\}$. Если p = q = 1/2, то $\mathbf{P}\{\tau = n\} = 1/2^n$, поэтому

$$\mathbf{M}\{\tau\} = \sum_{n=1}^{\infty} n \, \frac{1}{2^n} = 2 < \infty$$

и, следовательно, $\mathbf{P}\{\tau<\infty\}=1$. Далее, $\mathbf{P}\{X_{\tau}=1\}=1$ по определению момента τ , поэтому $\mathbf{M}\{X_{\tau}\}=1\neq \mathbf{M}\{X_{0}\}=0$.

Пример 7.12. Пусть $\{\xi_1,\xi_2,\dots\}$ — последовательность независимых одинаково распределенных случайных величин с $\mathbf{M}\{|\xi_k|\}<\infty;$ τ — некоторый момент остановки относительно $\mathcal{F}_n^\xi=\sigma\{\xi_1,\dots,\xi_n\},$ $\tau\geqslant 1,\,\mathbf{M}\{\tau\}<\infty.$ Тогда

$$\mathbf{M}\{\xi_1 + \ldots + \xi_{\tau}\} = \mathbf{M}\{\xi_1\} \mathbf{M}\{\tau\}.$$
 (7.10)

Если к тому же $\mathbf{M}\!\left\{\xi_k^2\right\}<\infty$, то

$$\mathbf{M}\left\{\left[\xi_1 + \ldots + \xi_\tau - \tau \,\mathbf{M}\{\xi_1\}\right]^2\right\} = \mathbf{D}\{\xi_1\} \,\mathbf{M}\{\tau\}. \tag{7.11}$$

Соотношения (7.10), (7.11) называются тождествами Вальда. Пример 7.13. Применим тождества Вальда к исследованию задачи об игре двух лиц (см. примеры 7.6, 7.11). Предположим, что игроки располагают конечными начальными капиталами A и B соответственно, ставки фиксированы и равны 1. Если $S_n = \sum_{k=1}^n \eta_k$, то величины капиталов первого и второго игроков после n-го розыгрыша будут

$$X_n = A + S_n, \qquad Y_n = B - S_n.$$

Игра заканчивается, если S_n достигает уровня (-A) или B. В первом случае разоряется первый игрок, во втором — второй. Определим момент окончания игры как момент остановки:

$$\tau = \inf \{ n \geqslant 1 : \quad S_n = -A \quad \text{или} \quad S_n = B \}.$$

Найти вероятности разорения каждого из игроков, если p=q=1/2. Решение. Последовательность S_n есть последовательность состояний марковской цепи, соответствующей модели случайных блужданий, у которой при p=q=1/2 все состояния возвратны. Поэтому за конечное время она достигает любого уровня и $\mathbf{P}\{\tau<\infty\}=1$, $\mathbf{M}\{\tau\}<\infty$. Введем $\alpha=\mathbf{P}\{S_{\tau}=-A\}$ и $\beta=\mathbf{P}\{S_{\tau}=B\}$, $\alpha+\beta=1$. Далее, при p=q=1/2 мы имеем из (7.10) с учетом $\mathbf{M}\{\eta_1\}=0$:

$$\mathbf{M}\{S_{\tau}\} = \mathbf{M}\{\tau\}\mathbf{M}\{\eta_1\} = 0 =$$

$$= -A \mathbf{P} \{ S_{\tau} = -A \} + B \mathbf{P} \{ S_{\tau} = B \} = \alpha(-A) + \beta B.$$

Таким образом, α и β удовлетворяют системе уравнений

$$\alpha + \beta = 1, \qquad \alpha A = \beta B,$$

разрешив которую, получим

$$\alpha = \frac{B}{A+B}, \qquad \beta = \frac{A}{A+B}.$$

Для вычисления среднего времени игры $\mathbf{M}\{ au\}$ применим тождество Вальда (7.11), которое в силу $\mathbf{D}\{\eta_1\}=1$, $\mathbf{M}\{\eta_1\}=0$ дает

$$\mathbf{M}\{S_{\tau}^{2}\} = \mathbf{M}\{\tau\} \mathbf{D}\{\eta_{1}\} = \mathbf{M}\{\tau\} = \alpha A^{2} + \beta B^{2} = AB.$$

Таким образом, $\mathbf{M}\{\tau\} = AB$, т. е. среднее время игры быстро возрастает, если увеличиваются начальные капиталы игроков.

Замечание. В примере 7.13 мы вычислили финальные вероятности состояний цепи Маркова, описывающей игру двух лиц (см. пример 5.14), с использованием мартингальной техники.

7.3. Теоремы сходимости мартингалов и их приложения.

Рассматриваемые ниже результаты показывают, что последовательности случайных величин, являющиеся мартингалами, при определенных условиях сходятся с вероятностью 1 (Р-п.н.) и в среднем, т. е. существует такая CB X_{∞} , что

$$X_n \xrightarrow{\Pi.H.} X_{\infty}$$
 и $\mathbf{M}\{|X_n - X_{\infty}|\} \to 0$ при $n \to \infty$.

Теорема 7.2. Если $X=\{X_n,\mathcal{F}_n\}-$ субмартингал, для которого найдется p>1, такое, что $\sup \mathbf{M}\{|X_n|^p\}<\infty,$ то существует

случайная величина X_{∞} , такая, что $\mathbf{M}\{|X_{\infty}|\}<\infty$, причем

- 1) $X_n = \mathbf{M}\{X_{\infty} \mid \mathcal{F}_n\}$ (P-n.u.); 2) $X_n \xrightarrow{\text{II.H.}} X_{\infty} npu \ n \to \infty;$ 3) $\mathbf{M}\{|X_n X_{\infty}|\} \to 0 npu \ n \to \infty.$

Утверждение теоремы может быть использовано для обоснования сходимости оценок параметров в различных задачах математической статистики.

Пример 7.14 (усиленный закон больших чисел). независимые случайные величины ξ_1,ξ_2,\ldots имеют одинаковые математические ожидания $\mathbf{M}\{\xi_k\}=a$ и ограниченные дисперсии $\mathbf{D}\{\xi_k\} = \sigma_k^2 \leqslant D$. Доказать, что

$$\widehat{a}_n = \frac{1}{n} \sum_{k=1}^n \xi_k \xrightarrow{\text{п.н.}} a \quad \text{при} \quad n \to \infty.$$

Решение. Пусть $\eta_k=\xi_k-a$, тогда $\mathbf{M}\{\eta_k\}=0,\,\mathbf{D}\{\eta_k\}=\sigma_k^2\leqslant D.$ Рассмотрим оценку \hat{a}_n :

$$\widehat{a}_n = \frac{1}{n} \sum_{k=1}^n \xi_k = \frac{1}{n} \sum_{k=1}^n (a + \eta_k) = a + \frac{1}{n} \sum_{k=1}^n \eta_k \xrightarrow{\text{II.H.}} a,$$

если $\overline{\eta}_n = \frac{1}{n} \sum_{k=1}^n \eta_k \xrightarrow{\text{п.н.}} 0$ при $n \to \infty$. Докажем, что требуемая сходимость действительно имеет место.

Если $\varepsilon_k=\frac{\eta_k}{k}$, то $\{\varepsilon_k\}$ независимы и $\mathbf{M}\{\varepsilon_k\}=0$. Пусть $X_n=\sum_{k=1}^n \varepsilon_k$, тогда из примера 7.2 следует, что $\{X_n, n \geqslant 1\}$ образует мартингал относительно потока $\mathcal{F}_n = \sigma\{\varepsilon_1, \dots, \varepsilon_n\} = \sigma\{\eta_1, \dots, \eta_n\}$. Поскольку

$$\mathbf{M}\{X_n^2\} = \mathbf{D}\{X_n\} = \sum_{k=1}^n \mathbf{D}\{\varepsilon_k\} \quad \text{и} \quad \mathbf{D}\{\varepsilon_k\} = \frac{1}{k^2} \mathbf{D}\{\eta_k\} = \frac{\sigma_k^2}{k^2} \leqslant \frac{D}{k^2},$$

то $\sup_{n\geqslant 0}\mathbf{M}\{X_n^2\}=\sum_{k=1}^\infty\mathbf{D}\{\varepsilon_k\}\leqslant D\sum_{k=1}^\infty\frac{1}{k^2}<\infty.$ Тогда из теоремы 7.2 следует, что $X_n \xrightarrow{\text{п.н.}} X_\infty$ при $n \to \infty$. Последнее означает, что

$$\mathbf{P}\big\{\omega \colon \sum_{k=1}^n \frac{\eta_k(\omega)}{k} \to X_{\infty}(\omega)\big\} = 1.$$

Здесь нам понадобится утверждение, известное как лемма Кронекера: если числовые последовательности $\{u_n\}$ и $\{x_n\}$ таковы, что $0 < u_n \uparrow \infty \ npu \ n \to \infty, \ a \ psd \sum_{k=1}^{\infty} x_k \ cxodumcs, \ mo \ \frac{1}{u_n} \sum_{k=1}^n u_k x_k \to 0$

Если обозначить $x_k = \eta_k(\omega)/k$, $u_k = k$, то $\sum_{k=1}^{\infty} x_k = X_{\infty}(\omega)$, поэтому $\overline{\eta}_n(\omega) = \frac{1}{n} \sum_{k=1}^n \eta_k(\omega) = \frac{1}{u_n} \sum_{k=1}^n u_k x_k \to 0 \text{ при } n \xrightarrow{\sim} \infty.$

Итак, $\mathbf{P}\{\omega\colon \overline{\eta}_n(\omega)\to 0\}=1$, т. е. $\overline{\eta}_n\xrightarrow{\text{п.н.}}0$ при $n\to\infty$, что и требовалось доказать.

3 амечание. Оценка $\widehat{\theta}_n$ параметра θ , построенная по наблюдениям $\{y_1,y_2,\,\ldots,y_n\}$, называется $\mathit{сильнo}$ $\mathit{cocmosmeльнoй},$ если $\widehat{\theta}_n \xrightarrow{\text{п.н.}} \theta$ при $n \to \infty$. Предыдущий пример показывает, что выборочное среднее \widehat{a}_n является сильно состоятельной оценкой математического ожидания a.

Поведение квадратично-интегрируемого мартингала $X = \{X_n, \mathcal{F}_n\}$ в значительной степени определяется его квадратической характеристикой (компенсатором) $\langle X \rangle_n$.

Обозначим через $\{\langle X \rangle_{\infty} = \infty\}$ событие, состоящее в том, что

неубывающая последовательность $\langle X \rangle_n$ не ограничена. Теорема 7.3. Пусть $X = \{X_n, \mathcal{F}_n\}$ — квадратично-интегрируемый мартингал и $\langle X \rangle = \{\langle X \rangle_n, \mathcal{F}_{n-1}\}$ — его квадратическая характеристика. Если $\mathbf{P}\{\langle X \rangle_\infty = \infty\} = 1$, то

$$\frac{X_n}{\langle X \rangle_n} \xrightarrow{\text{II.H.}} 0 \quad npu \quad n \to \infty.$$

Следующие примеры показывают применение этого результата в задачах оценивания неизвестных параметров моделей наблюдения.

 Π ример 7.15. Пусть $\{x_k\}$ — числовая последовательность, а

$$y_k = x_k \theta + \varepsilon_k, \quad k = 1, 2, \dots, n,$$

где $\{\varepsilon_k\}$ — независимые центрированные ошибки наблюдений с дисперсией $\mathbf{D}\{\varepsilon_k\} = \sigma^2$. Доказать, что оценка параметра θ , построенная по методу наименьших квадратов (МНК-оценка), является сильно состоятельной при условии

$$\sum_{k=1}^{\infty} x_k^2 = \infty.$$

Решение. Найдем выражение для МНК-оценки $\widehat{\theta}_n$, построенной по наблюдениям $\{y_1,\ldots,y_n\}$:

$$\widehat{\theta}_n = \arg\min_{\theta} \sum_{k=1}^n (y_k - x_k \theta)^2 = \arg\min_{\theta} \mathcal{L}(\theta).$$

Найдем $\widehat{\theta}_n$ из условия $\frac{d\mathcal{L}(\theta)}{d\theta}=0$, т. е. $\sum_{k=1}^n x_k(y_k-x_k\theta)=0$:

$$\widehat{\theta}_n = \frac{1}{d_n} \sum_{k=1}^n x_k y_k$$
, где $d_n = \sum_{k=1}^n x_k^2$.

Из последнего выражения следует

$$\widehat{\theta}_n = \frac{1}{d_n} \sum_{k=1}^n x_k (x_k \theta + \varepsilon_k) = \theta + \frac{1}{d_n} \sum_{k=1}^n x_k \varepsilon_k = \theta + \Delta \widehat{\theta}_n.$$

Таким образом, нам достаточно показать, что $\Delta \widehat{\theta}_n \xrightarrow{\text{п.н.}} 0.$

Если $X_n = \sum_{k=1}^n x_k \varepsilon_k$, то с учетом $\mathbf{M}\{\varepsilon_k\} = 0$ мы заключаем, что $\{X_n, \mathcal{F}_n\}$ — мартингал, где $\mathcal{F}_n = \sigma\{\varepsilon_1, \dots, \varepsilon_n\}$, причем в силу примера 7.8 $\langle X \rangle_n = \sum_{k=1}^n \mathbf{D}\{x_k \varepsilon_k\} = \sigma^2 d_n$. Поэтому $\langle X \rangle_n \xrightarrow{\text{п.н.}} \infty$ при $n \to \infty$, если $d_n \to \infty$. Тогда в силу теоремы 7.3 имеем $\Delta \widehat{\theta}_n = \sigma^2 \frac{X_n}{\langle X \rangle_n} \xrightarrow{\text{п.н.}} 0$ при $n \to \infty$. Таким образом, $\widehat{\theta}_n \xrightarrow{\text{п.н.}} \theta$ при $n \to \infty$, что и требовалось доказать.

В заключение рассмотрим задачу оценивания неизвестного параметра в разностном стохастическом уравнении (задачу параметрической идентификации модели случайного процесса).

Пример 7.16. Пусть случайная последовательность $\{X_n, n \geqslant 0\}$ удовлетворяет уравнению авторегрессии первого порядка

$$X_{n+1} = \theta X_n + \xi_{n+1}, \quad n \geqslant 0, \qquad X_0 = 0,$$

где $\{\xi_n\}$ — независимые центрированные случайные величины, такие, что $\mathbf{D}\{\xi_n\}=D_n\geqslant D>0,\ D_{n+1}/D_n\leqslant K_1,\ \mathbf{M}\{\xi_n^4\}\leqslant K_2,\ \mathrm{a}\ \theta$ — неизвестный неслучайный параметр. Доказать, что оценка $\widehat{\theta}_n$ метода взвешенных наименьших квадратов является сильно состоятельной.

Решение. Рассмотрим оценку метода взвешенных наименьших квадратов, которая строится следующим образом. Для заданного набора наблюдений $\{X_0,\ldots,X_n\}$ оценка $\widehat{\theta}_n$ выбирается так, чтобы минимизировать сумму нормированных квадратических отклонений, а именно:

$$\widehat{\theta}_n = \arg\min_{\theta} \sum_{k=0}^{n-1} \frac{(X_{k+1} - \theta X_k)^2}{D_{k+1}}.$$

Преобразования, аналогичные приведенным выше в примере 7.15, дают следующий результат:

$$\widehat{\theta}_n = \left\{ \sum_{k=0}^{n-1} \frac{X_k^2}{D_{k+1}} \right\}^{-1} \sum_{k=0}^{n-1} \frac{X_k X_{k+1}}{D_{k+1}}.$$

Данную оценку можно записать в виде $\widehat{\theta}_n = \theta + M_n / \langle M \rangle_n$, где

$$M_n = \sum_{k=0}^{n-1} \frac{X_k \xi_{k+1}}{D_{k+1}},\tag{7.12}$$

$$\langle M \rangle_n = \sum_{k=0}^{n-1} \frac{X_k^2}{D_{k+1}}.$$
 (7.13)

Пусть σ -алгебра \mathcal{F}_n порождена наблюдениями $\{X_0,\,\dots,X_n\}$, тогда

$$\mathbf{M}\{M_{n+1} \mid \mathcal{F}_n\} = \mathbf{M}\left\{M_n + \frac{X_n \xi_{n+1}}{D_{n+1}} \mid \mathcal{F}_n\right\} = M_n + \frac{X_n}{D_{n+1}} \mathbf{M}\{\xi_{n+1}\} = M_n,$$

т. е. $\{M_n, \mathcal{F}_n\}$ — мартингал. Нетрудно показать, что $\langle M \rangle_n$ — квадратическая характеристика указанного мартингала (см. задачу 12).

Докажем теперь расходимость (**P**-п.н.) последовательности $\langle M \rangle_n$:

$$\begin{split} \sum_{k=1}^{\infty} \frac{\xi_k^2}{D_k} &= \sum_{k=1}^{\infty} \frac{(X_k - \theta X_{k-1})^2}{D_k} \leqslant 2 \left\{ \sum_{k=1}^{\infty} \frac{X_k^2}{D_k} + \theta^2 \sum_{k=1}^{\infty} \frac{X_{k-1}^2}{D_k} \right\} = \\ &= 2 \left\{ \sum_{k=0}^{\infty} \frac{D_{k+1}}{D_k} \cdot \frac{X_k^2}{D_{k+1}} + \theta^2 \sum_{k=0}^{\infty} \frac{X_k^2}{D_{k+1}} \right\} \leqslant 2 \left(K_1 + \theta^2 \right) \sum_{k=0}^{\infty} \frac{X_k^2}{D_{k+1}}. \end{split}$$

Поэтому из расходимости (**P**-п.н.) ряда $\sum_{k=1}^{\infty} \frac{\xi_k^2}{D_k}$ следует, что с вероят-

ностью 1 выполнено $\langle M \rangle_{\infty} = \sum_{k=0}^{\infty} \frac{X_k^2}{D_{k+1}} = \infty.$

Пусть
$$\eta_k = \frac{\xi_k^2}{D_k}$$
, тогда $\mathbf{M}\{\eta_k\} = 1$, $\mathbf{M}\{\eta_k^2\} = \frac{\mathbf{M}\{\xi_k^4\}}{D_k^2} \leqslant \frac{K_2}{D^2} < \infty$.

Отсюда с учетом результата примера 7.14 получаем $\frac{1}{n} \sum_{k=1}^{n} \eta_{k} =$

$$=rac{1}{n}\sum_{k=1}^{n}rac{\xi_{k}^{2}}{D_{k}}\xrightarrow{\text{п.н.}}1$$
 при $n o\infty,$ что влечет $\mathbf{P}\Big\{\sum_{k=1}^{\infty}rac{\xi_{k}^{2}}{D_{k}}=\infty\Big\}=1.$

Итак, $\mathbf{P}\{\langle M\rangle_{\infty}=\infty\}=1$, поэтому по теореме 7.3

$$\widehat{\theta}_n - \theta = \frac{M_n}{\langle M \rangle_n} \xrightarrow{\text{п.н.}} 0 \quad \text{при} \quad n \to \infty,$$

что и означает сильную состоятельность оценки $\widehat{\theta}_n$.

Заметим, что если $\{\xi_n\}$ одинаково распределены, то достаточно потребовать только $\mathbf{D}\{\xi_n\}=D>0$. Если же $\{\xi_n\}$ — гауссовская последовательность, то остается лишь условие $D_{k+1}/D_k\leqslant K_1$, так как $\mathbf{M}\{\eta_k^2\}=3$.

7.4. Задачи для самостоятельного решения.

1. Пусть ξ и η — независимые и одинаково распределенные случайные величины с $\mathbf{M}\{|\xi|\}<\infty$. Показать, что

$$\mathbf{M}\{\xi \mid \xi + \eta\} = \mathbf{M}\{\eta \mid \xi + \eta\} = \frac{\xi + \eta}{2} \quad (\mathbf{P}\text{-}\Pi.H.).$$

У к а з а н и е. Воспользоваться определением условного математического ожидания.

2. Пусть случайные векторы x, u, v имеют совместное гауссовское невырожденное распределение, причем u и v — независимы. Доказать, что

$$\mathbf{M}\{x \mid u, v\} = \mathbf{M}\{x \mid u\} + \mathbf{M}\{x \mid v\} - \mathbf{M}\{x\}.$$

Указание. Воспользоваться теоремой о нормальной корреляции.

10 Б.М. Миллер и А.Р. Панков

3. Пусть $\{X_n, \mathcal{F}_n\}$ — мартингал. Доказать, что для любого $m \geqslant 1$ справедливо $\mathbf{M}\{X_{n+m} \mid \mathcal{F}_n\} = X_n$ (**P**-п.н.).

У казание. Показать, что $\mathbf{M}\{X_{n+m}\mid \mathcal{F}_n\}=\mathbf{M}\{X_{n+m-1}\mid \mathcal{F}_n\}$, и воспользоваться методом математической индукции.

4. Пусть $\{\xi_n, n \geqslant 0\}$ — гауссовская СП с параметрами $m_\xi(n)$ и $R_\xi(n,m)$. Пусть также $v_n = \{R_\xi(0,1), \ldots, R_\xi(0,n)\}$, а V_n — матрица с элементами $R_\xi(i,j), i,j=1,\ldots,n$. Доказать, что последовательность

$$\eta_n = m_{\xi}(0) + v_n V_n^{-1}(\xi^n - m_{\xi}^n), \quad n \geqslant 1,$$

где $\xi^n=\{\xi_1,\ldots,\xi_n\}^*,\,m_\xi^n=\{m_\xi(1),\ldots,m_\xi(n)\}^*,\,$ образует мартингал относительно потока σ -алгебр $\mathcal{F}_n=\sigma\{\xi_1,\ldots,\xi_n\}.$

Указание. Воспользоваться теоремой о нормальной корреляции и результатом примера 7.4.

5. Пусть $\{\xi_k\}$ — центрированный белый шум, а $\{\eta_k\}$ — такая СП, что при каждом $k\geqslant 1$ совокупности случайных величин $\{\eta_1,\ldots,\eta_k\}$ и $\{\xi_k,\xi_{k+1},\ldots\}$ независимы. Доказать, что если $\mathbf{M}\{|\eta_k\xi_k|\}<\infty$, то последовательность $\zeta_n=\sum_{k=1}^n\eta_k\xi_k,\,n\geqslant 1$ является мартингалом.

6. Вывести соотношения (7.6)–(7.8) для квадратично-интегрируемого мартингала $\{X_n, \mathcal{F}_n\}$.

7. В примере 7.8 вывести соотношение (7.9) для квадратической характеристики с использованием (7.6).

8. Объяснить, почему разность марковских моментов, вообще говоря, марковским моментом не является.

9. Доказать тождество Вальда для дисперсий (соотношение (7.11) в примере 7.12).

10. Пусть $\{\xi_1,\xi_2,\dots\}$ — последовательность независимых одинаково распределенных случайных величин с $\mathbf{P}\{\xi_i=0\}=\mathbf{P}\{\xi_i=2\}=1/2$. Показать, что последовательность $X_n=\prod_{i=1}^n\xi_i$ является мартингалом относительно потока σ -алгебр $\mathcal{F}_n=\sigma\{\xi_1,\dots,\xi_n\}$ и сходится $(\mathbf{P}$ -п.н.) к конечной случайной величине.

У казание. Показать, что $\{X_n\}$ сходится к нулю с вероятностью 1.

11. Пусть независимые случайные величины $\{\xi_1,\xi_2,\dots\}$ имеют распределение $\mathbf{P}\{\xi_m=1\}=\mathbf{P}\{\xi_m=-1\}=\frac{1}{2m^2},\ \mathbf{P}\{\xi_m=0\}=1-\frac{1}{m^2}.$ Показать, что последовательность $X_n=\sum\limits_{m=1}^n\xi_m$ сходится (**P**-п.н.).

12. Доказать, что (7.13) является квадратической характеристикой мартингала (7.12).

13. Пусть $\widehat{\theta}_n$ — с.к.-оптимальная оценка для СВ θ по наблюдениям $\{\xi_1,\ldots,\xi_n\}$, $\mathbf{M}\{|\theta|^2\}<\infty$. Доказать, что если $\widehat{\theta}_n \xrightarrow{\mathrm{c.k.}} \theta$, то также и $\widehat{\theta}_n \xrightarrow{\mathrm{n.h.}} \theta$ при $n \to \infty$.

У казание. Показать, что $\hat{\theta}_n$ — квадратично-интегрируемый мартингал относительно $\mathcal{F}_n^{\xi} = \sigma\{\xi_1,\dots,\xi_n\}.$

ГЛАВА ІІІ

СЛУЧАЙНЫЕ ФУНКЦИИ

В данной главе будут изучаться случайные процессы с непрерывным временем, которые обычно называют случайными функциями. В дальнейшем для обозначения случайной функции будем использовать сокращение СФ.

§ 8. Элементы анализа случайных функций

8.1. Непрерывность случайных функций. Пусть случайный процесс $\xi(t)$ определен на некотором связном подмножестве T действительной оси \mathbb{R}^1 , т. е. является процессом с непрерывным временем. Такие процессы далее будем называть случайными функциями $(C\Phi)$. В данном параграфе также всюду предполагается, что для любого $t \in T$ выполнено $\mathbf{M}\{|\xi(t)|^2\} < \infty$. Очевидно, что в этом случае существуют и конечны математическое ожидание $m_\xi(t)$, дисперсия $D_\xi(t)$ и ковариационная функция $R_\xi(t,\tau)$ при всех $t,\tau \in T$. По умолчанию будем также считать, что С Φ $\xi(t)$ — вещественная.

О пределение 8.1. Случайная величина η называется $cpednekea-dpamuческим <math>(c.\kappa.)$ npedenom СФ $\xi(t)$ в точке $t_0 \in T$, если

$$\mathbf{M}\{|\xi(t)-\eta|^2\} o 0$$
 при $t o t_0.$

Указанный вид сходимости будем далее обозначать $\xi(t) \xrightarrow{\text{с.к.}} \eta$ при $t \to t_0$ или $\eta = \underset{t \to t_0}{\text{l.i.m.}} \xi(t)$, а случайную величину η будем называть с.к.-пределом $\xi(t)$ при $t \to t_0$.

Определение 8.2. Случайная функция $\{\xi(t), t \in T\}$ называется непрерывной в среднеквадратическом смысле (с.к.-непрерывной) в точке $t_0 \in T$, если $\xi(t) \xrightarrow{\text{с.к.}} \xi(t_0)$ при $t \to t_0$.

Определение 8.3. Случайная функция $\{\xi(t), t \in T\}$ называется $c.\kappa$.-непрерывной на T, если она с.к.-непрерывна в каждой точке $t_0 \in T$.

Пусть $\{\xi(t,\omega),\ t\in T\}$ — некоторая траектория СФ $\xi(t)$. Как показывают рассмотренные далее примеры, из того, что $\xi(t)$ с.к.-непрерывна на T, в общем случае не следует, что все или почти все функции $\xi(t,\omega)$ являются непрерывными.

Определение 8.4. Случайная функция называется непрерывной на T, если $\mathbf{P}\{\omega \colon \xi(t,\omega)$ — непрерывная на T функция $\}=\hat{1}$.

Из определения 8.4 следует, что почти все траектории непрерывной С $\Phi \xi(t)$ являются непрерывными (в обычном смысле) функциями. Очевидно, что для каждого $t_0 \in T$

$$\mathbf{P}\{\omega \colon \xi(t,\omega) \to \xi(t_0,\omega), t \to t_0\} = 1,$$

т. е. непрерывная СФ $\xi(t)$ для каждого $t_0 \in T$ почти наверное (n.н.)сходится к $\xi(t_0)$ при $t \to t_0$. Соответствующий вид сходимости будем обозначать $\xi(t) \xrightarrow{\text{п.н.}} \xi(t_0), \ t \to t_0$. Таким образом, непрерывная $\mathrm{C}\Phi\ \xi(t)$ является также noumu наверное непрерывной в каждой точке $t_0 \in T$. Заметим, однако, что из п.н.-непрерывности $\xi(t)$ на T в общем случае не следует ее непрерывность, т. е. непрерывность почти всех ее траекторий.

Рассмотрение различных видов непрерывности случайных функций вызвано наличием различных видов сходимости последовательностей случайных величин. Кроме того, для различных видов непрерывности (а также дифференцируемости, интегрируемости и т.д.) имеются соответствующие критерии, позволяющие установить непрерывность случайной функции. Для с.к.-непрерывности соответствующий критерий является весьма простым.

Tеорема 8.1. Для с.к.-непрерывности случайной функции $\xi(t)$ в точке $t_0 \in T$ необходимо и достаточно, чтобы $m_{\xi}(t)$ было непрерывно в точке t_0 , а $R_{\xi}(t,\tau)$ непрерывна в точке (t_0,t_0) .

Заметим сразу, что из с.к.-непрерывности $\xi(t)$ в силу теоремы 8.1 следует, что дисперсия $D_{\xi}(t) = R_{\xi}(t,t)$ — непрерывная функция.

Таким образом, для исследования с.к.-непрерывности С Φ $\xi(t)$ достаточно исследовать непрерывность ее моментных характеристик первого и второго порядка, что можно сделать, используя стандартные методы математического анализа.

 Π ример 8.1. Случайная функция $\xi(t)$ задана соотношением

$$\xi(t) = \sum_{k=1}^{n} V_k \varphi_k(t), \quad t \in T, \tag{8.1}$$

где $\{V_k\}$ представляют собой некоррелированные случайные величины с параметрами $\mathbf{M}\{V_k\} = m_k$, $\mathbf{D}\{V_k\} = D_k$, а $\{\varphi_k(t)\}$ — непрерывные на T неслучайные функции. Исследовать $\xi(t)$ на непрерывность.

Решение. Заметим, что в силу (8.1) при каждом $\omega \in \Omega$ выполне-

но
$$\xi(t,\omega)=\sum_{k=1}^n V_k(\omega)\varphi_k(t)$$
, где $\mathbf{P}\{\omega\colon V_k(\omega)<\infty\}=1$. Таким образом,

 $\xi(t,\omega)$ — линейная комбинация непрерывных функций с п.н.-конечными коэффициентами. Следовательно, $\mathbf{P}\{\omega:\xi(t,\omega)$ непрерывна $\}=1$, т. е. С Φ $\xi(t)$ непрерывна.

Для исследования с. к.-непрерывности найдем $m_{\xi}(t)$ и $R_{\xi}(t,\tau)$. Очевидно, что

$$m_{\xi}(t) = \sum_{k=1}^{n} m_k \varphi_k(t),$$

$$R_{\xi}(t,\tau) = \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbf{cov}\{V_k, V_l\} \varphi_k(t) \varphi_l(\tau) = \sum_{k=1}^{n} D_k \varphi_k(t) \varphi_k(\tau),$$

так как по условию $\mathbf{cov}\{V_k,V_l\}=0$ при $k\neq l$. Отсюда вытекает, что $m_\xi(t)$ и $R_\xi(t,\tau)$ непрерывны на T и $T\times T$ соответственно и, следовательно, $\xi(t)$ с.к.-непрерывна на T.

Заметим, что в данном примере понятие с.к.-непрерывности и непрерывности совпадают. Рассмотрим теперь случай, когда $\xi(t)$ в некоторой точке $t_0 \in T$ является разрывной как почти наверное, так и в среднем квадратическом.

 Π р и м е р 8.2. СФ $\xi(t)$ задана на T = [0, 1] следующим образом:

$$\xi(t) = \left\{ \begin{array}{ll} V_1, & \text{если} & t < 1/2, \\ V_2, & \text{если} & t \geqslant 1/2, \end{array} \right.$$

где V_1 и V_2 — независимые одинаково распределенные случайные величины со средним m и дисперсией D>0. Исследовать непрерывность $\xi(t)$ в точке $t_0=1/2$.

Решение. Для всякого $\omega \in \Omega$ выполнено $\xi(t,\omega) \to V_1(\omega)$ при $t \to t_0 - 0$ и $\xi(t,\omega) \to V_2(\omega)$ при $t \to t_0 + 0$. В силу независимости $\{V_1, V_2\}$ и условия D > 0 имеем: $\mathbf{P}\{\omega \colon V_1(\omega) \neq V_2(\omega)\} > 0$ и, следовательно,

$$\mathbf{P}\{\omega: \xi(t,\omega) \to \xi(t_0,\omega)$$
 при $t \to t_0\} < 1$.

Таким образом, $\xi(t)$ не является п.н.-непрерывной в точке $t_0=1/2$. Теперь исследуем с.к.-непрерывность $\xi(t)$ на T:

$$m_{\xi}(t) = \left\{ egin{array}{ll} \mathbf{M}\{V_1\}\,, & \mathrm{есл}\,\mathrm{i} & t < 1/2, \\ \mathbf{M}\{V_2\}\,, & \mathrm{есл}\,\mathrm{i} & t \geqslant 1/2, \end{array}
ight.$$

поэтому $m_{\xi}(t) \equiv m$, так как $\mathbf{M}\{V_1\} = \mathbf{M}\{V_2\} = m$ по условию. Следовательно, $m_{\xi}(t)$ непрерывна на T. Найдем теперь ковариационную функцию $R_{\xi}(t,\tau)$. Если $\max(t,\tau) < 1/2$, то

$$R_{\xi}(t,\tau) = \mathbf{cov}\{\xi(t), \xi(\tau)\} = \mathbf{cov}\{V_1, V_1\} = D.$$

Аналогично, $R_\xi(t,\tau)=D$ при $\min(t,\tau)\geqslant 1/2$. Если же $t<1/2\leqslant \tau$, то $R_\xi(t,\tau)=\mathbf{cov}\{V_1,V_2\}=0$. Отсюда получаем, что $R_\xi(t,\tau)\to D$ при

 $t, au o t_0$ так, что $t, au < t_0$ или $t, au > t_0$. Если же $t, au o t_0$ так, что $t < t_0$, а $au > t_0$, то $R_\xi(t, au) o 0$. С учетом D > 0 получаем, что $R_\xi(t, au)$ разрывна в точке (t_0, t_0) . Итак, $\xi(t)$ не является с.к.-непрерывной в точке $t_0 = 1/2$.

Заметим, что если V_1 и V_2 таковы, что $\mathbf{P}\{V_1=V_2\}=0$, то почти все траектории $\xi(t,\omega)$ терпят разрыв в точке $t_0=1/2$. Если же $\mathbf{P}\{V_1=V_2\}=\alpha>0$, то с вероятностью α траектории $\xi(t,\omega)$ будут непрерывными. Например, если $\mathbf{P}\{V_1=1\}=p>0$, а $\mathbf{P}\{V_1=0\}=1-p$, то $\mathbf{P}\{V_1=V_2\}=p^2+(1-p)^2=\alpha>0$. Отсюда $\mathbf{P}\{\omega:\xi(t,\omega)$ непрерывна $\delta=\alpha>0$.

Покажем теперь, что СФ $\xi(t)$ может быть с.к.-непрерывной даже в случае, когда почти все ее траектории разрывны.

Пример 8.3. Пусть СФ $\xi(t)$ определена на T=[0,1] следующим образом:

$$\xi(t) = \left\{ \begin{array}{ll} V_1, & \text{если} & t < r, \\ V_2, & \text{если} & t \geqslant r, \end{array} \right.$$

где r — случайная величина, равномерно распределенная на T=[0,1], V_1 и V_2 — гауссовские СВ с одинаковыми средними m и дисперсиями D>0. Случайные величины $r,\ V_1$ и V_2 независимы в совокупности. Доказать, что СФ $\xi(t)$ с.к.-непрерывна на [0,1], хотя почти все ее траектории разрывны.

Решение. Для вычисления $m_{\xi}(t)$ введем две вероятностных гипотезы:

$$H_1 = \{t < r\} \quad \text{и} \quad H_2 = \{t \geqslant r\}.$$

По условию $\mathbf{P}\{H_1\} = 1 - t$ и $\mathbf{P}\{H_2\} = t$.

По формуле полного математического ожидания (см. п. 14.5) имеем

$$m_{\xi}(t) = \mathbf{M}\{\xi(t)\} = \mathbf{P}\{H_1\} \ \mathbf{M}\{\xi(t) \mid H_1\} + \mathbf{P}\{H_2\} \ \mathbf{M}\{\xi(t) \mid H_2\} =$$

= $(1-t) \ \mathbf{M}\{V_1\} + t \ \mathbf{M}\{V_2\} = (1-t) \ m + t \ m \equiv m.$

Таким образом, функция $m_{\xi}(t)$ непрерывна на T.

Обозначим $au_1 = \max(t_1, t_2), \ au_2 = \min(t_1, t_2)$ и рассмотрим следующие гипотезы:

$$H_1 = \{ \tau_1 < r \}, \quad H_2 = \{ \tau_2 > r \}, \quad H_3 = \{ \tau_2 \leqslant r \leqslant \tau_1 \}.$$

По условию $\mathbf{P}\{H_1\}=1-\tau_1,\ \mathbf{P}\{H_2\}=\tau_2,\ \mathbf{P}\{H_3\}=\tau_1-\tau_2=|t_1-t_2|.$ Вычислим теперь ковариационную функцию $R_\xi(t_1,t_2)$:

$$R_{\xi}(t_1, t_2) = \sum_{k=1}^{3} \mathbf{P}\{H_k\} \mathbf{M} \{ \overset{\circ}{\xi}(t_1) \overset{\circ}{\xi}(t_2) \mid H_k \}.$$

Для k=1,2 имеем $\mathbf{M}\left\{\overset{\circ}{\xi}(t_1)\overset{\circ}{\xi}(t_2)\mid H_k\right\}=\mathbf{M}\left\{\overset{\circ}{V_k}\overset{\circ}{V_k}\right\}=D$. Если же k=3, то $\mathbf{M}\left\{\overset{\circ}{\xi}(t_1)\overset{\circ}{\xi}(t_2)\mid H_3\right\}=\mathbf{M}\left\{\overset{\circ}{V_1}\overset{\circ}{V_2}\right\}=0$ по условию. Итак,

$$R_{\xi}(t_1, t_2) = (1 - \tau_1) D + \tau_2 D = D (1 - (\tau_1 - \tau_2)) = D (1 - |t_1 - t_2|).$$

Отсюда $R_\xi(t_1,t_2) \to D = R_\xi(t,t)$ при $t_1,t_2 \to t$ для всякого $t \in T$. Таким образом, $\xi(t)$ с.к.-непрерывна всюду на T.

Покажем теперь, что почти все траектории СФ $\xi(t)$ разрывны. Итак, если $0 < r(\omega) < 1$ для некоторого $\omega \in \Omega$, то в точке $t = r(\omega)$ траектория $\xi(t,\omega)$ изменяет свое значение с $V_1(\omega)$ на $V_2(\omega)$. По условию $\mathbf{P}\{\omega\colon 0 < r(\omega) < 1\} = 1$ и $\mathbf{P}\{\omega\colon V_1(\omega) \neq V_2(\omega)\} = 1$. Поэтому

$$\mathbf{P}\{\omega : \xi(t_1, \omega) \neq \xi(t_2, \omega) \text{ для } t_1 < r(\omega) < t_2\} = 1,$$

что означает разрывность траекторий $\xi(t)$ с вероятностью 1.

Пусть теперь $\xi(t) \in \mathbb{R}^p$ при каждом $t \in T$, где $p \geqslant 1$. В этом случае $\xi(t)$ называется p-мерной случайной функцией.

Определение 8.5. p-мерная СФ $\{\xi(t), t \in T\}$ называется $c.\kappa.$ -непрерывной в точке $t_0 \in T$ (на T), если все ее компоненты $\{\xi_k(t), k=1,\ldots,p\}$ с.к.-непрерывны в точке $t_0 \in T$ (на T).

Пример 8.4. Пусть $\lambda=\{\lambda_1,\dots,\lambda_p\}^*\in\mathbb{R}^p$ — неслучайный вектор, а $\xi(t)$ — с.к.-непрерывная p-мерная СФ. Показать, что случайная

функция
$$\eta(t) = \lambda^* \xi(t) = \sum_{k=1}^p \lambda_k \xi_k(t)$$
 с. к.-непрерывна на T .

 ${
m P}$ ешение. Функция $m_{\eta}(t)=\sum_{k=1}^p \lambda_k m_k(t)$ непрерывна на T, как

линейная комбинация непрерывных функций $m_k(t)=\mathbf{M}\{\xi_k(t)\}$. Исследуем теперь непрерывность ковариационной функции $R_\eta(t,\tau)=$

$$=\sum_{k=1}^{p}\sum_{l=1}^{p}\lambda_{k}\lambda_{l}R_{kl}(t, au),$$
 где $R_{kl}(t, au)=\mathbf{cov}\{\xi_{k}(t),\xi_{l}(au)\}.$ Из леммы

Лоэва (см. п. 14.4) следует, что если $\xi_k(t) \xrightarrow{\text{с.к.}} \xi_k(t_0), \, \xi_l(\tau) \xrightarrow{\text{с.к.}} \xi_l(t_0)$ при $t, \tau \to t_0$, то

$$R_{kl}(t,\tau) = \mathbf{cov}\{\xi_k(t), \xi_l(\tau)\} \to \mathbf{cov}\{\xi_k(t_0), \xi_l(t_0)\} = R_{kl}(t_0, t_0).$$

Таким образом, функции $R_{kl}(t,\tau)$ непрерывны в произвольной точке (t_0,t_0) и, следовательно, $R_{\eta}(t,\tau)$, как линейная комбинация непрерывных функций, также непрерывна. Теперь из теоремы 8.1 следует, что $\eta(t)$ с.к.-непрерывна на T.

Замечание. Заметим, что если в примере 8.4 СФ $\xi_k(t)$ непрерывны, то $\eta(t)$ также непрерывна, поскольку все ее траектории суть

линейные комбинации непрерывных функций: $\eta(t,\omega) = \sum_{k=1}^p \lambda_k \xi_k(t,\omega)$.

Действительно,

$$\mathbf{P}\{\omega \colon \eta(t,\omega) \text{ непрерывна}\} = \mathbf{P}\{\bigcap_{k=1}^p \{\omega \colon \xi_k(t,\omega) \text{ непрерывна}\}\} = 1,$$

что и означает непрерывность СФ $\eta(t)$.

В заключение данного пункта рассмотрим одно утверждение, позволяющее судить о непрерывности траекторий $\xi(t)$. Для этого нам понадобится следующее определение (см. также п. 1.3).

Определение 8.6. Случайные функции $\xi(t)$ и $\eta(t)$ называются cmoxacmuvecku эквивалентными на T, если

$$\mathbf{P}\{\omega \colon \xi(t,\omega) \neq \eta(t,\omega)\} = 0 \quad \forall t \in T.$$

Можно показать, что стохастически эквивалентные С Φ имеют одни и те же конечномерные распределения и, следовательно, все их вероятностные характеристики совпадают (см. п. 1.3).

Теорема 8.2 (Колмогоров). Пусть $\xi(t)$ — случайная функция, принимающая числовые значения и заданная на отрезке T=[a,b]. Если существуют положительные константы K, α и β , такие, что для всех $t, \tau \in T$

$$\mathbf{M}\{|\xi(t) - \xi(\tau)|^{\alpha}\} \leqslant K|t - \tau|^{1+\beta},$$

то найдется непрерывная случайная функция $\widetilde{\xi}(t)$, стохастически эквивалентная $\xi(t)$.

Обычно на практике стохастически эквивалентные случайные функции отождествляют, т. е. подразумевается, например, что вместо $\xi(t)$ в расчетах используется ее непрерывная модификация $\widetilde{\xi}(t)$ (если, конечно, последняя существует).

Пример 8.5. Пусть $\xi(t)$ — гауссовская СФ, такая, что $m_{\xi}(t)=0$ и $\mathbf{M}\big\{|\xi(t)-\xi(\tau)|^2\big\}=\lambda|t-\tau|$ для всех $t,\tau\in T=[0,1]$. Показать, что $\xi(t)$ имеет непрерывную модификацию.

Решение. Пусть $\eta=\xi(t)-\xi(\tau)$. В силу гауссовости $\xi(t)$ случайная величина η также является гауссовской, причем $\mathbf{M}\{\eta\}=m_{\xi}(t)-m_{\xi}(\tau)=0$, а $\mathbf{D}\{\eta\}=\mathbf{M}\{|\xi(t)-\xi(\tau)|^2\}=\lambda|t-\tau|=D_{\eta}$. Известно, что для центрированной гауссовской величины справедливо равенство $\mathbf{M}\{\eta^4\}=3D_{\eta}^2$. Поэтому $\mathbf{M}\{\eta^4\}=\mathbf{M}\{|\xi(t)-\xi(\tau)|^4\}=3D_{\eta}^2=3\lambda^2|t-\tau|^2$. Если положить $\alpha=4$, $\beta=1$ и $K=3\lambda^2$, то $\mathbf{M}\{|\xi(t)-\xi(\tau)|^{\alpha}\}=K|t-\tau|^{1+\beta}$ и требуемое утверждение следует из теоремы 8.2.

Заметим, что в условиях примера 8.5 СФ $\xi(t)$ также является с.к.-непрерывной, так как $\lim_{t\to \tau} \mathbf{M} \big\{ |\xi(t) - \xi(\tau)|^2 \big\} = \lambda \lim_{t\to \tau} |t-\tau| = 0$, т. е. $\xi(t) \xrightarrow{\text{с.к.}} \xi(\tau)$, $t\to \tau$ для любого $\tau\in T$. Более того, если в условиях теоремы 8.2 потребовать, чтобы $\alpha\geqslant 2$, то СФ $\widetilde{\xi}(t)$ будет одновременно с.к.-непрерывной и потраекторно непрерывной.

8.2. Дифференцирование случайных функций. Для СФ понятие дифференцируемости и, следовательно, производной можно ввести различными способами. Мы будем рассматривать производные двух видов: производную в среднем квадратическом (с.к.-производную) и потраекторную производную.

Пусть $\xi(t)$ — гильбертова СФ, определенная на открытом интервале $T\subseteq\mathbb{R}^1$, имеющая среднее $m_{\xi}(t)$ и ковариационную функцию $R_{\xi}(t,s)$.

Определение 8.7. Случайная величина $\xi(t_0)$ называется $c.\kappa.$ -npouseodhoй случайной функции $\xi(t)$ в точке $t_0 \in T$, если

$$\frac{\xi(t_0+h)-\xi(t_0)}{h} \xrightarrow{\text{с.к.}} \dot{\xi}(t_0) \quad \text{при} \quad h \to 0.$$
 (8.2)

Если указанный с.к.-предел существует, то СФ $\xi(t)$ называется $c.\kappa.-\partial u\phi\phi$ еренцируемой в точке t_0 .

Если $\xi(t)$ с.к.-дифференцируема в каждой точке $t \in T$, то будем говорить, что $\xi(t)$ $c.к.-\partial u \phi \phi$ еренцируема на T, а семейство случайных величин $\{\xi(t), t \in T\}$ будем называть с. к.-производной СФ $\xi(t)$ на T.

 ${
m Teopema~8.3.}$ Для того чтобы случайная функция $\xi(t)$ была $c.\kappa.$ -дифференцируемой в точке $t_0\in T,$ необходимо и достаточно, чтобы существовали производная $\frac{dm_\xi(t)}{dt}$ в точке t_0 и обобщенная смешанная производная второго порядка $\frac{\partial^2 R_\xi(t,\tau)}{\partial t\partial \tau}$ в точке (t_0,t_0) . Замечание. Обобщенная точке

Замечание. Обобщенная производная определяется как

$$\frac{\partial^{2} R_{\xi}(t,\tau)}{\partial t \partial \tau} \bigg|_{t=\tau=t_{0}} = \lim_{h,\delta \to 0} \frac{1}{h\delta} \left[R_{\xi}(t_{0}+h,t_{0}+\delta) - R_{\xi}(t_{0}+h,t_{0}) - R_{\xi}(t_{0},t_{0}+\delta) + R_{\xi}(t_{0},t_{0}) \right].$$

Достаточным условием существования обобщенной смешанной производной является непрерывность хотя бы одной из частных производных: $\frac{\partial}{\partial t} \left(\frac{\partial R_{\xi}(t,\tau)}{\partial \tau} \right)$, $\frac{\partial}{\partial \tau} \left(\frac{\partial R_{\xi}(t,\tau)}{\partial t} \right)$.

Если $\xi(t)$ дифференцируема на T, то ее с.к.-производная $\dot{\xi}(t)$ имеет математическое ожидание $m_{\dot{\xi}}(t)$ и ковариационную функцию $R_{\dot{\xi}}(t,\tau)$, определяемые формулами

$$m_{\dot{\xi}}(t) = \frac{dm_{\xi}}{dt}(t), \qquad R_{\dot{\xi}}(t,\tau) = \frac{\partial^2 R_{\xi}}{\partial t \partial \tau}(t,\tau).$$
 (8.3)

 Π р и мер $\,$ 8.6. Пусть центрированная СФ $\,\xi(t)\,$ имеет ковариационную функцию $R_{\xi}(t,\tau) = 2e^{-\alpha(t-\tau)^2}$, где $\alpha > 0$. Вычислить дисперсию $D_{\dot{\xi}}(t)$ ее с.к.-производной $\dot{\xi}(t)$.

Решение. Поскольку $m_{\xi}(t)\equiv 0$, а $R_{\xi}(t,\tau)$ бесконечно дифференцируема, СФ $\xi(t)$ с.к.-дифференцируема в силу теоремы 8.3. Для нахождения $R_{\dot{\epsilon}}(t,\tau)$ воспользуемся формулой (8.3):

$$\frac{\partial R_{\xi}}{\partial \tau}(t,\tau) = 4\alpha (t-\tau)e^{-\alpha(t-\tau)^2}.$$

Следовательно,

$$R_{\xi}(t,\tau) = \frac{\partial}{\partial t} \left[\frac{\partial R_{\xi}}{\partial \tau}(t,\tau) \right] = 4\alpha (1 - 2\alpha (t-\tau)^2) e^{-\alpha (t-\tau)^2},$$

и дисперсия $\xi(t)$ вычисляется по формуле $D_{\dot{\xi}}(t)=R_{\dot{\xi}}(t,t)=4\,\alpha.$

Критерий с.к.-дифференцируемости весьма легко проверяем и позволяет также определить математическое ожидание и ковариационную функцию с.к.-производной. К сожалению, явный вид с.к.-производной в общем случае, используя только результат теоремы 8.3, получить не удается. Поэтому нам понадобится следующее определе-

Определение 8.8. Случайная функция $\xi(t)$ называется $\partial u \phi \phi e$ ренцируемой (потраекторно) на Т, если почти все ее траектории дифференцируемые функции, т. е.

$$\mathbf{P}\{\omega: \xi(t,\omega)$$
 дифференцируема на $T\}=1.$

Очевидно, что если $\xi'(t)$ — потраекторная производная $\xi(t)$, а $\dot{\xi}(t)$ — с.к.-производная, то $\mathbf{P}\{\xi'(t)=\dot{\xi}(t)\}=1$, т.е. С Φ $\dot{\xi}(t)$ и $\xi'(t)$ стохастически эквивалентны. Действительно, при всяком $t \in T$ в силу совпадения с вероятностью 1 пределов $[\xi(t+h)-\xi(t)]/h \xrightarrow{\text{п.н.}} \xi'(t)$ и $[\xi(t+h)-\xi(t)]/h \xrightarrow{\text{с.к.}} \dot{\xi}(t)$ справедливо $\dot{\xi}(t)=\xi'(t)$ (**Р**-п.н.). Пример 8.7. СФ $\xi(t)$ задана соотношением (8.1), т. е.

$$\xi(t) = \sum_{k=1}^{n} V_k \varphi_k(t), \quad t \in T, \tag{8.4}$$

где $\{\varphi_k(t)\}$ — неслучайные дифференцируемые функции, а $\{V_k\}$ случайные коэффициенты, причем $\mathbf{M}\{V_k^2\}<\infty,\,k=1,\ldots,n.$ Найти с.к.-производную $\dot{\xi}(t)$.

 ${
m P}$ ешение. Из (8.4) следует, что траектории $\xi(t,\omega)$ СФ $\xi(t)$ имеют вид $\xi(t,\omega)=\sum_{k=1}^n V_k(\omega)\varphi_k(t),\ t\in T,$ поэтому $\xi'(t)$ существует и имеет траектории $\xi'(t,\omega)=\sum_{k=1}^n V_k(\omega)\dot{\varphi}_k(t)$, где $\dot{\varphi}_k(t)=\frac{d\varphi_k(t)}{dt}$. Отсюда следует, что если $\xi(t)$ с.к.-дифференцируема, то ее с.к.-производная $\xi(t)$

при каждом $t \in T$ имеет вид

$$\dot{\xi}(t) = \sum_{k=1}^{n} V_k \dot{\varphi}_k(t) \quad (\mathbf{P}\text{-}\text{п.н.}). \tag{8.5}$$

В силу $\mathbf{M}\big\{V_k^2\big\}<\infty$ из (8.4) следует, что функции $m_\xi(t),\ R_\xi(t,\tau)$ определены и имеют вил

$$m_{\xi}(t) = \sum_{k=1}^{n} m_k \varphi_k(t), \qquad R_{\xi}(t,\tau) = \sum_{k=1}^{n} \sum_{l=1}^{n} R_{kl} \varphi_k(t) \varphi_l(\tau),$$

где $m_k = \mathbf{M}\{V_k\}$, $R_{kl} = \mathbf{cov}\{V_k, V_l\}$. Очевидно, что функции $m_\xi(t)$ и $R_\xi(t,\tau)$ дифференцируемы необходимое число раз (как линейные комбинации дифференцируемых функций). Поэтому $\dot{\xi}(t)$ существует и определяется соотношением (8.5). При этом $m_{\dot{\xi}}(t) = \sum_{k=1}^n m_k \dot{\varphi}_k(t)$, а $R_{\dot{\xi}}(t,\tau) = \sum_{k=1}^n \sum_{l=1}^n R_{kl} \dot{\varphi}_k(t) \dot{\varphi}_l(\tau)$, что вытекает из (8.3).

Следующий пример показывает, что операция с.к.-дифференцирования является линейным преобразованием.

 Π р и м е р 8.8. Для случайной функции $\xi(t) = \sum_{k=1}^{n} \alpha_k \xi_k(t)$, где α_k — числовые коэффициенты, $\xi_k(t)$ — с.к.-дифференцируемые случайные функции, вычислить $\dot{\xi}(t)$.

Решение. Вычислим $\dot{\xi}(t)$ по определению 8.7:

$$\frac{\xi(t+h) - \xi(t)}{h} = \sum_{k=1}^{n} \alpha_k \frac{\xi_k(t+h) - \xi_k(t)}{h} \xrightarrow{\text{с.к.}} \sum_{k=1}^{n} \alpha_k \dot{\xi}_k(t) \quad \text{при} \quad h \to 0$$

в силу свойств с.к.-сходимости. Таким образом,

$$\dot{\xi}(t) = \sum_{k=1}^{n} \alpha_k \dot{\xi}_k(t), \quad t \in T.$$
(8.6)

Формула (8.6) показывает, что с.к.-производная линейной комбинации с.к.-дифференцируемых функций является линейной комбинацией их с.к.-производных, что и означает линейность операции с.к.-дифференцирования. \blacksquare

Замечание. Полученный в примере результат может быть обобщен в следующем направлении: если детерминированная функция $\varphi(t)$ дифференцируема на T, а СФ $\xi(t)$ с.к.-дифференцируема на T, то СФ $\eta(t)=\varphi(t)\xi(t)$ имеет с.к.-производную

$$\dot{\eta}(t) = \frac{d\varphi(t)}{dt}\xi(t) + \varphi(t)\dot{\xi}(t).$$

Оказывается, что далеко не все случайные функции дифференцируемы даже в среднеквадратическом смысле.

Пример 8.9. Центрированная СФ $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t,\tau) = D \min(t,\tau), \ D>0$. Показать, что она нигде не дифференцируема в с.к.-смысле.

Решение. По определению

$$\min(t,\tau) = \left\{ \begin{array}{ll} t, & \text{если} & t \leqslant \tau, \\ \tau, & \text{если} & t > \tau, \end{array} \right.$$

поэтому

$$\varphi(t,\tau) = \frac{\partial}{\partial \tau} \{ \min(t,\tau) \} = \left\{ \begin{array}{ll} 0, & \text{если} & t \leqslant \tau, \\ 1, & \text{если} & t > \tau. \end{array} \right.$$

Отсюда $\varphi(t,\tau) \to 0$ при $\tau \to t+0$ и $\varphi(t,\tau) \to 1$ при $\tau \to t-0$. Таким образом, при $t=\tau$ функция $\varphi(t,\tau)$ является разрывной по переменной t и, следовательно, производная $\frac{\partial \varphi}{\partial t}(t,\tau)$ при $t=\tau$ не существует. Следовательно, $\frac{\partial^2 R_\xi(t,\tau)}{\partial t \partial \tau} = D \frac{\partial^2 \min(t,\tau)}{\partial t \partial \tau}$ не определена при $t=\tau$ ни для одного $t \in \mathbb{R}^1$, т. е. $\xi(t)$ нигде не имеет с.к.-производной. Заметим, что, используя понятие обобщенной производной, можно записать

$$R_{\dot{\xi}}(t,\tau) = \frac{\partial^2 R_{\xi}}{\partial t \partial \tau}(t,\tau) = D \,\delta(t-\tau),$$

где $\delta(x)$ — дельта-функция Дирака. Таким образом, формально СФ $\dot{\xi}(t)$ является таким случайным процессом, что $R_{\dot{\xi}}(t,\tau)=0$ при любых $t\neq \tau$, а $D_{\dot{\xi}}(t)=R_{\dot{\xi}}(t,t)=D\,\delta(0)=\infty$. Это означает, что сечения СФ $\dot{\xi}(t)$ представляют собой некоррелированные случайные величины с бесконечной дисперсией. Такой процесс называется белым шумом (см. п. 1.4). \blacksquare

Если $\xi(t)$ — гауссовская С Φ , то $\dot{\xi}(t)$ — также гауссовская в силу следующего утверждения.

Теорема 8.4. Если $\{\xi(t), t\in T\}$ — c.к.-дифференцируемая гауссовская $C\Phi$, то $\dot{\xi}(t)$ также является гауссовской $C\Phi$ с математическим ожиданием и ковариационной функцией, определенными в (8.3).

Пример 8.10. Для гауссовской СФ $\{\xi(t), t \in \mathbb{R}^1\}$ с математическим ожиданием $m_{\xi}(t) = t^2$ и ковариационной функцией $R_{\xi}(t, \tau) = 4t\tau$ вычислить $\mathbf{P}\{\dot{\xi}(2) > 2\}$.

Решение. По теореме 8.4 $\dot{\xi}(t)$ является гауссовской С Φ , причем

$$m_{\dot{\xi}}(t) = \frac{dm_{\xi}}{dt}(t) = 2t, \qquad R_{\dot{\xi}}(t,\tau) = \frac{\partial^2 R_{\xi}}{\partial t \partial \tau}(t,\tau) = 4.$$

Поэтому при $t \in \mathbb{R}^1$ сечение $\dot{\xi}(t)$ имеет гауссовское распределение $\mathcal{N}(2t;4)$. Следовательно, $\dot{\xi}(2) \sim \mathcal{N}(4;4)$ и

$$\mathbf{P}\{\dot{\xi}(2) > 2\} = 1 - \varPhi\left(\frac{2 - m_{\dot{\xi}}(2)}{\sqrt{D_{\dot{\xi}}(2)}}\right) = 1 - \varPhi(-1) \approx 1 - 0.1587 = 0.8413,$$

где $\Phi(x)=rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{x}e^{-t^{2}/2}\,dt$ — функция Лапласа (интеграл вероятностей) (см. пп. 14.6 и 15.1). \blacksquare

8.3. Интегрирование случайных функций. Понятие интеграла от случайной функции будем также изучать в двух следующих вариантах: интеграл в среднеквадратическом смысле (с.к.-интеграл) и потраекторный интеграл.

Пусть СФ $\xi(t)$ определена на $T \subseteq \mathbb{R}^1$. На отрезке $[a,b] \subseteq T$ построим некоторое разбиение $a=t_0\leqslant t_1\leqslant\ldots\leqslant t_{n-1}\leqslant t_n=b$, а на каждом из промежутков этого разбиения выберем произвольную точку $\tau_i\in[t_{i-1},t_i),\ i=1,\ldots,n$.

Определение 8.9. Если при $n \to \infty$ и $\max_{i=1,\dots,n} (t_i - t_{i-1}) \to 0$ существует предел в среднеквадратическом

$$\sum_{i=1}^{n} \xi(\tau_i)(t_i - t_{i-1}) \xrightarrow{\text{C.K.}} \eta, \tag{8.7}$$

не зависящий от способа разбиения $\{t_i\}$ и выбора точек $\{\tau_i\}$, то СФ $\xi(t)$ называется $c.\kappa.$ -интегрируемой на [a,b], а случайная величина η называется ее $c.\kappa.$ -интегралом по [a,b] и обозначается

$$\eta = \int_{a}^{b} \xi(t) \, dt.$$

Для с.к.-интегрируемости имеется весьма простой критерий.

 ${
m T}$ е о р е м а 8.5. Для существования $c.\kappa$ -интеграла $\int\limits_{a}^{b} \xi(t) \, dt$ необ-

ходимо и достаточно, чтобы существовали следующие интегралы Римана:

$$I_1 = \int_{a}^{b} m_{\xi}(t) dt, \tag{8.8}$$

$$I_2 = \int_a^b \int_a^b R_{\xi}(t, \tau) dt d\tau, \tag{8.9}$$

 $εθe \ m_{\xi}(t) = \mathbf{M}\{\xi(t)\}, \ R_{\xi}(t,\tau) = \mathbf{cov}\{\xi(t),\xi(\tau)\}.$

Tеорема 8.6. Если $C\Phi$ $\xi(t)$ с.к.-интегрируема на T, то

$$\mathbf{M} \left\{ \int_{a}^{b} \xi(t) dt \right\} = \int_{a}^{b} m_{\xi}(t) dt = I_{1},$$

$$\mathbf{cov} \left\{ \int_{a}^{b} \xi(t) dt, \xi(\tau) \right\} = \int_{a}^{b} R_{\xi}(t, \tau) dt, \quad \tau \in T,$$

$$\mathbf{cov} \left\{ \int_{a}^{b} \xi(t) dt, \int_{c}^{d} \xi(\tau) d\tau \right\} = \int_{a}^{b} \int_{c}^{d} R_{\xi}(t, \tau) dt d\tau, \quad [c, d] \subseteq T,$$

$$\mathbf{D} \left\{ \int_{a}^{b} \xi(t) dt \right\} = \int_{a}^{b} \int_{a}^{b} R_{\xi}(t, \tau) dt d\tau = I_{2}.$$

Из определения 8.9 следует, что с.к.-интегрирование является линейным преобразованием $\xi(t)$. Отсюда с учетом свойств с.к.-сходимости гауссовских случайных величин (см. п. 14.6) получаем, что если

 $\xi(t)$ — гауссовская СФ, то с.к.-интеграл $\int\limits_a^b \xi(t)\,dt$ представляет собой

гауссовскую случайную величину со средним I_1 и дисперсией I_2 , определенными в (8.8), (8.9).

Рассмотрим свойства с.к.-интеграла на примерах.

Пример 8.11. Доказать, что всякая СФ $\xi(t)$, с.к.-непрерывная на конечном промежутке [a,b], является с.к.-интегрируемой на [a,b].

Решение. Если $\xi(t)$ с.к.-непрерывна на [a,b], то функция $m_{\xi}(t)$ непрерывна на [a,b], поэтому I_1 в (8.8) существует как интеграл от непрерывной функции по конечному отрезку. В силу с.к.-непрерывности $\xi(t)$ функция $R_{\xi}(t,\tau)$ непрерывна при $t=\tau$. Последнее условие достаточно для того, чтобы $R_{\xi}(t,\tau)$ была непрерывной всюду на $[a,b] \times [a,b]$. Таким образом, I_2 также существует и, следовательно, $\xi(t)$ с.к.-интегрируема на [a,b] в силу утверждения теоремы 8.5. \blacksquare

Пример 8.12. Пусть $\{\xi(t),\,t\geqslant 0\}$ имеет характеристики $m_\xi(t)=mt,\,R_\xi(t,s)=Dts,$ где D>0. Вычислить математическое ожидание и ковариационную функцию случайной функции

$$\eta(t) = \int_{0}^{t} \xi(\tau) d\tau, \quad t \geqslant 0.$$

Решение. По условию $m_{\xi}(t)$, $R_{\xi}(t,\tau)$ непрерывны. Следовательно, $\xi(t)$ с.к.-интегрируема на любом конечном промежутке [0,t] при $t \geqslant 0$. Тогда по теореме 8.6 находим:

$$\begin{split} m_{\eta}(t) &= \mathbf{M}\{\eta(t)\} = \int\limits_{0}^{t} \mathbf{M}\{\xi(\tau)\} \ d\tau = m \int\limits_{0}^{t} \tau \ d\tau = \frac{m}{2} t^{2}, \\ R_{\eta}(t,s) &= \mathbf{cov} \Big\{ \int\limits_{0}^{t} \xi(\tau_{1}) \ d\tau_{1}, \int\limits_{0}^{s} \xi(\tau_{2}) \ d\tau_{2} \Big\} = \int\limits_{0}^{t} \int\limits_{0}^{s} \mathbf{cov} \{\xi(\tau_{1}), \xi(\tau_{2})\} \ d\tau_{1} d\tau_{2} = \\ &= \int\limits_{0}^{t} \int\limits_{0}^{s} R_{\xi}(\tau_{1}, \tau_{2}) \ d\tau_{1} d\tau_{2} = D \int\limits_{0}^{t} \tau_{1} d\tau_{1} \int\limits_{0}^{s} \tau_{2} \ d\tau_{2} = \frac{D}{4} t^{2} s^{2}, \\ D_{\eta}(t) &= R_{\eta}(t, t) = \frac{D}{4} t^{4}. \quad \blacksquare \end{split}$$

Для с.к.-интеграла справедливы многие свойства обычного интеграла от неслучайных функций.

1) Линейность интеграла:

$$\int_{T} \sum_{k=1}^{n} a_k \xi_k(t) dt = \sum_{k=1}^{n} a_k \int_{T} \xi_k(t) dt,$$
 (8.10)

где $\{a_k\}$ — неслучайные коэффициенты, а $\{\xi_k(t)\}$ — с.к.-интегрируемые на T случайные функции.

2) Формула интегрирования по частям:

$$\int_{t_0}^t \dot{\varphi}(\tau)\xi(\tau) d\tau = \varphi(t)\xi(t) - \varphi(t_0)\xi(t_0) - \int_{t_0}^t \varphi(\tau)\dot{\xi}(\tau) d\tau, \tag{8.11}$$

где $\varphi(\tau)$ — непрерывно дифференцируемая неслучайная функция, а $\xi(t)$ — С Φ , имеющая с.к.-непрерывную с.к.-производную.

3) Правило дифференцирования по верхнему пределу: если $\xi(t)$ —

с.к.-непрерывная СФ, то с.к.-производная СФ $\eta(t) = \int\limits_0^t \xi(\tau)\,d\tau$ при

каждом $t \in T$ имеет вид

$$\dot{\eta}(t) = \frac{d}{dt} \int_{0}^{t} \xi(\tau) d\tau = \xi(t) \quad (\mathbf{P}\text{-}\text{п.н.}). \tag{8.12}$$

 Π ример 8.13. Доказать формулу (8.12).

Решение. Пусть h > 0, тогда

$$\Delta \eta = \eta(t+h) - \eta(t) = \int_{0}^{t+h} \xi(\tau) \, d\tau - \int_{0}^{t} \xi(\tau) \, d\tau = \int_{t}^{t+h} \xi(\tau) \, d\tau.$$

Покажем, что $\mathbf{M}\{|\Delta\eta/h - \xi(t)|^2\} \to 0$ при $h \to 0$. Если $m_{\varepsilon}(t) = 0$, то по теореме 8.6

$$\mathbf{M}\{\Delta \eta^{2}\} = \int_{t}^{t+h} \int_{t}^{t+h} R_{\xi}(\tau_{1}, \tau_{2}) d\tau_{1} d\tau_{2} = R_{\xi}(\sigma_{1}, \sigma_{2}) h^{2}$$

для некоторых $\sigma_1, \sigma_2 \in [t, t+h]$. Аналогично, для $\sigma_3 \in [t, t+h]$

$$\mathbf{M}\{\Delta\eta\,\xi(t)\} = \int_{t}^{t+h} R_{\xi}(\tau,t)\,d\tau = R_{\xi}(\sigma_3,t)\,h.$$

Отсюда $\mathbf{M}\{|\Delta\eta/h - \xi(t)|^2\} = R_{\xi}(\sigma_1, \sigma_2) - 2R_{\xi}(\sigma_3, t) + R_{\xi}(t, t) \to 0$ при $h \to 0$, так как $R_{\xi}(\sigma_1, \sigma_2) \to R_{\xi}(t, t)$, $R_{\xi}(\sigma_3, t) \to R_{\xi}(t, t)$ в силу того, что $\sigma_k \to t$ при $h \to 0$, k = 1, 2, 3, а функция $R_{\xi}(t, \tau)$ непрерывна. Итак, мы показали, что $(\eta(t+h) - \eta(t))/h \xrightarrow{c.k.} \xi(t)$ при $h \to 0$. Если $m_{\xi}(t) \neq 0$, то $\eta(t) = \int\limits_{0}^{t} \xi(\tau) \, d\tau + \int\limits_{0}^{t} m_{\xi}(\tau) \, d\tau$ и по доказанному

Если
$$m_{\xi}(t)\neq 0$$
, то $\eta(t)=\int\limits_0^t \overset{\circ}{\xi}(\tau)\,d\tau\,+\int\limits_0^t m_{\xi}(\tau)\,d\tau$ и по доказанному

 $\dot{\eta}(t) = \dot{\xi}(t) + m_{\xi}(t) = \xi(t)$. Формула (8.12) полностью доказана. \blacksquare Замечание. Пусть $\xi(t)$ такова, что почти все ее реализации интегрируемы по Риману на множестве T, т. е.

$$\mathbf{P}ig\{\omega\colon ext{ существует интеграл Римана } \eta^R(\omega) = \int\limits_{\mathbb{T}} \xi(t,\omega)\,dtig\} = 1.$$

Тогда η^R является случайной величиной (т. е. измеримой функцией от ω). Если же $\xi(t)$ является к тому же с.к.-интегрируемой, то потра
екторный интеграл η^R и с.к.-интеграл $\eta = \int \xi(t) \, dt$ совпадают с ве-

роятностью 1. Сформулированное утверждение зачастую позволяет явным образом вычислить с.к.-интеграл.

 Π ример 8.14. СФ $\xi(t)$ задана формулой

$$\xi(t) = U_1 \sin \nu t + U_2 \cos \nu t, \quad \nu > 0, \quad t \geqslant 0,$$

где U_1, U_2 — независимые гауссовские случайные величины с нулевым средним и дисперсией D>0. Найти явный вид с.к.-интеграла

$$\eta(t) = \int_{0}^{t} \xi(\tau) d\tau, \quad t \geqslant 0$$

и вычислить его математическое ожидание $m_{\eta}(t)$ и дисперсию $D_{\eta}(t)$. Решение. Для $\omega \in \Omega$ траектория СФ $\xi(\tau)$ имеет вид

$$\xi(\tau,\omega) = U_1(\omega)\sin\nu\tau + U_2(\omega)\cos\nu\tau$$

и является интегрируемой на [0,t] функцией. Поэтому

$$\eta^R(t,\omega) = \int\limits_0^t \xi(au,\omega) \,d au = rac{1}{
u}[U_1(\omega)(1-\cos
u t) + U_2(\omega)\sin
u t], \quad t\geqslant 0.$$

Заметим, что $\xi(t)$ с.к.-непрерывна, как линейная комбинация непрерывных неслучайных функций со случайными коэффициентами, имеющими конечные вторые моменты (см. пример 8.1). В силу примера 8.11 с.к.-интеграл $\eta(t)$ существует и совпадает с потраекторным интегралом $\eta^R(t,\omega)$:

$$\eta(t) = \frac{1}{\nu} [U_1(1 - \cos \nu t) + U_2 \sin \nu t] \quad (\mathbf{P}\text{-n.H.}). \tag{8.13}$$

Теперь, используя (8.13), нетрудно вычислить $m_{\eta}(t)$ и $D_{\eta}(t)$:

$$m_{\eta}(t) = \frac{1}{\nu} [\mathbf{M}\{U_1\} (1 - \cos \nu t) + \mathbf{M}\{U_2\} \sin \nu t] = 0,$$

$$D_{\eta}(t) = \frac{1}{\nu^2} [\mathbf{D}\{U_1\} (1 - \cos \nu t)^2 + \mathbf{D}\{U_2\} \sin^2 \nu t + 2 \mathbf{cov}\{U_1, U_2\} \times \mathbf{D}\{U_2\} + \mathbf{D}\{U_2\} \sin^2 \nu t + 2 \mathbf{cov}\{U_1, U_2\} \times \mathbf{D}\{U_2\} + \mathbf{D}\{U$$

$$\times (1 - \cos \nu t) \sin \nu t] = \frac{D}{\nu^2} [(1 - \cos \nu t)^2 + \sin^2 \nu t] = \frac{2D}{\nu^2} (1 - \cos \nu t).$$

Таким образом, при каждом $t\geqslant 0$ случайная величина $\eta(t)$ является гауссовской с распределением $\mathcal{N}(0;2D(1-\cos\nu t)/\nu^2)$, как с.к.-интеграл от гауссовской СФ $\xi(t)$.

8.4. Дифференциальные уравнения со случайной правой частью. Введенные выше понятия с.к.-производной и с.к.-интеграла позволяют рассмотреть проблему корректного описания линейного дифференциального уравнения со случайными возмущениями в правой части и случайными начальными условиями:

$$\dot{\eta}(t) = a(t)\eta(t) + b(t)\xi(t), \quad t \geqslant 0, \tag{8.14}$$

$$\eta(0) = \nu, \tag{8.15}$$

где $\dot{\eta}(t)$ — с.к.-производная $\eta(t),\ \xi(t)$ — с.к.-непрерывная при $t\geqslant 0$ случайная функция, $a(t),\ b(t)$ — непрерывные неслучайные функции, а ν — некоторая случайная величина.

11 Б.М. Миллер и А.Р. Панков

Определение 8.10. Случайная функция $\eta(t)$, $t\geqslant 0$ является решением уравнения (8.14) с начальным условием (8.15), если при каждом $t\geqslant 0$ выполнено

$$\eta(t) = \nu + \int_{0}^{t} a(\tau)\eta(\tau) d\tau + \int_{0}^{t} b(\tau)\xi(\tau) d\tau, \tag{8.16}$$

где в правой части (8.16) все интегралы понимаются в с.к.-смысле. Для явного построения решения (8.16) введем вспомогательную неслу чайную функцию $\theta(t)$:

$$\begin{cases} \dot{\theta}(t) = a(t)\theta(t), & t \geqslant 0, \\ \theta(0) = 1. \end{cases}$$
 (8.17)

Известно, что $\theta(t)$ из (8.17) такова, что $\theta(t) \neq 0$ при любом $t \geqslant 0$, если a(t) кусочно непрерывна. Следующий пример показывает, как выглядит общее решение уравнения (8.14).

Пример 8.15. Доказать, что случайная функция

$$\eta(t) = \theta(t)\nu + \theta(t) \int_{0}^{t} \theta^{-1}(\tau)b(\tau)\xi(\tau) d\tau, \qquad (8.18)$$

где $\theta(t)$ — решение уравнения (8.17), удовлетворяет уравнению (8.14). Решение. Для доказательства вычислим с.к.-производную $\dot{\eta}(t)$ функции $\eta(t)$, определенной в (8.18), пользуясь полученными в предыдущих пунктах свойствами операции с.к.-дифференцирования:

$$\dot{\eta}(t) = \frac{d}{dt} \left[\theta(t) \nu + \theta(t) \int_{0}^{t} \theta^{-1}(\tau) b(\tau) \xi(\tau) d\tau \right] =$$

$$= \dot{\theta}(t) \nu + \dot{\theta}(t) \int_{0}^{t} \theta^{-1}(\tau) b(\tau) \xi(\tau) d\tau + \theta(t) \frac{d}{dt} \left[\int_{0}^{t} \theta^{-1}(\tau) b(\tau) \xi(\tau) d\tau \right].$$

Применяя правило дифференцирования с.к.-интеграла по верхнему пределу (8.12) с учетом $\dot{\theta}(t) = a(t)\theta(t)$, получаем

$$\dot{\eta}(t) = a(t) \left[\theta(t)\nu + \theta(t) \int_{0}^{t} \theta^{-1}(t)b(\tau)\xi(\tau) d\tau \right] + \theta(t)\theta^{-1}(t)b(t)\xi(t) = a(t)\eta(t) + b(t)\xi(t).$$

Таким образом, $\eta(t)$ удовлетворяет (8.14) при всех t > 0. Осталось проверить выполнение начального условия: $\eta(0) = \theta(0)\nu = \nu$, поскольку $\theta(0) = 1$ в силу (8.17). Итак, $\eta(t)$, определенная в (8.18), является решением задачи (8.14)–(8.16), что и требовалось доказать.

Выражение (8.18) позволяет выписать явный аналитический вид решения уравнения (8.14) во многих практически важных случаях.

Пример 8.16. СФ $\eta(t)$, $t \ge 0$ удовлетворяет уравнению

$$\dot{\eta}(t) = \alpha \eta(t) + \xi, \qquad \eta(0) = \nu, \tag{8.19}$$

где ξ, ν образуют гауссовский случайный вектор, причем $m_{\xi} = \mathbf{M}\{\xi\}$, $m_{\nu} = \mathbf{M}\{\nu\}$, $D_{\xi} = \mathbf{D}\{\xi\}$, $D_{\nu} = \mathbf{D}\{\nu\}$, $\rho = \mathbf{cov}\{\xi, \nu\}$. Найти закон распределения случайной величины $\eta(t)$ при любом t>0.

Решение. В данном случае для $\theta(t)$ имеем

$$\dot{\theta}(t) = \alpha \theta(t), \qquad \theta(0) = 1,$$

поэтому $\theta(t) = e^{\alpha t}$. Общее решение (8.18) уравнения (8.19):

$$\eta(t) = e^{\alpha t} \nu + e^{\alpha t} \int_{0}^{t} e^{-\alpha \tau} \xi \, d\tau = e^{\alpha t} \nu + \xi e^{\alpha t} \int_{0}^{t} e^{-\alpha t} \, d\tau = e^{\alpha t} \nu + \frac{\xi}{\alpha} \left(e^{\alpha t} - 1 \right).$$

Таким образом, $\eta(t)$ — гауссовская случайная величина, как линейное преобразование гауссовского случайного вектора $\{\nu,\xi\}^*$, т.е. $\eta(t)\sim \mathcal{N}(m_\eta(t);D_\eta(t))$, где параметры $m_\eta(t)$ и $D_\eta(t)$ определяются следующим образом:

$$m_{\eta}(t) = \mathbf{M}\{\eta(t)\} = e^{\alpha t} m_{\nu} + \frac{m_{\xi}}{\alpha} \left(e^{\alpha t} - 1 \right),$$

$$D_{\eta}(t) = \mathbf{D}\{\eta(t)\} = e^{2\alpha t} D_{\nu} + \frac{D_{\xi}}{\alpha^{2}} \left(e^{\alpha t} - 1 \right)^{2} + \frac{2\rho}{\alpha} \left(e^{2\alpha t} - e^{\alpha t} \right). \quad \blacksquare$$

Замечание. Рассмотрим асимптотическое поведение решения уравнения (8.19) при $t \to \infty$. Если $\alpha < 0$, то

$$\eta(t) \xrightarrow{\mathrm{c.к.}} \frac{\xi}{|\alpha|}$$
 при $t \to \infty$,

поскольку $e^{\alpha t} \nu \xrightarrow{\text{с.к.}} 0$ и $\xi\left(e^{\alpha t}-1\right)/\alpha \xrightarrow{\text{с.к.}} \xi/|\alpha|$. Таким образом, дифференциальная система (8.19) выступает по отношению к входному сигналу ξ как усилитель с коэффициентом усиления $k=1/|\alpha|$, если время t достаточно велико.

Заметим, что в случае, когда СФ $\xi(t)$ имеет кусочно непрерывные (следовательно, интегрируемые) траектории, формула (8.18) может

рассматриваться как потраекторное решение уравнения (8.14), т.е. для почти всех $\omega \in \Omega$ выполнено

$$\eta(t,\omega) = \theta(t)\nu(\omega) + \theta(t) \int_{0}^{t} \theta^{-1}(\tau)b(\tau)\xi(\tau,\omega) d\tau.$$
 (8.20)

Формула (8.20) задает «пучок» реализаций решений уравнения (8.14), который может быть получен, например, непосредственным решением обыкновенных дифференциальных уравнений, описывающих каждую траекторию:

$$\left\{ \begin{array}{l} \dot{\eta}(t,\omega) = a(t)\eta(t,\omega) + b(t)\xi(t,\omega), \\[0.2cm] \eta(0,\omega) = \nu(\omega). \end{array} \right.$$

Рассмотрим теперь векторный случай, когда система (8.14) состоит из n линейных дифференциальных уравнений:

$$\begin{cases} \dot{\eta}(t) = A(t)\eta(t) + B(t)\xi(t), & t > 0, \\ \eta(0) = \nu, \end{cases}$$
 (8.21)

где $\dot{\eta}(t)$ — с.к.-производная n-мерной СФ $\eta(t)$, $\xi(t)$ — m-мерная с.к.-непрерывная СФ, ν — n-мерный СВ, а матричные функции $A(t) \in \mathbb{R}^{n \times n}$, $B(t) \in \mathbb{R}^{n \times m}$ имеют неслучайные кусочно непрерывные компоненты.

Общее решение уравнения (8.21) имеет вид

$$\eta(t) = \Theta(t)\nu + \Theta(t) \int_{0}^{t} \Theta^{-1}(\tau)B(\tau)\xi(\tau) d\tau, \qquad (8.22)$$

где $\Theta(t)$ — матричная функция Коши, удовлетворяющая системе однородных дифференциальных уравнений

$$\begin{cases} \dot{\Theta}(t) = A(t)\Theta(t), \\ \Theta(0) = I, \end{cases}$$

 $\Theta^{-1}(t)$ — матрица, обратная к $\Theta(t)$. Интеграл в правой части (8.22) понимается в с.к.-смысле и применяется к случайной векторной подынтегральной функции покомпонентно. Заметим, что $\Theta^{-1}(t)$ существует при каждом $t\geqslant 0$, если A(t) имеет кусочно непрерывные компоненты.

Пример 8.17. Вычислить математическое ожидание $m_{\eta}(t)$ и ковариационную матрицу $K_{\eta}(t)$ решения $\eta(t)$ системы (8.21), считая, что при каждом $t \geqslant 0$ случайные величины ν , $\xi(t)$ являются некоррелированными, а функции $m_{\xi}(t)$, $R_{\xi}(t_1,t_2)$ известны.

Решение. Применим к обеим частям (8.22) оператор математического ожидания:

$$\begin{split} m_{\eta}(t) &= \mathbf{M}\{\eta(t)\} = \mathbf{M}\{\Theta(t)\nu\} + \Theta(t)\,\mathbf{M}\Big\{\int\limits_{0}^{t} \Theta^{-1}(\tau)B(\tau)\xi(\tau)\,d\tau\Big\} = \\ &= \Theta(t)m_{\nu} + \Theta(t)\int\limits_{0}^{t} \Theta^{-1}(\tau)B(\tau)m_{\xi}(\tau)\,d\tau. \end{split}$$

Из последнего соотношения следует, что $m_{\eta}(t)$ является решением системы обыкновенных дифференциальных уравнений

$$\dot{m}_{\eta}(t) = A(t)m_{\eta}(t) + B(t)m_{\xi}(t)$$

с начальным условием $m_{\eta}(0) = m_{\nu}$.

Аналогично, для $K_{\eta}(t) = \mathbf{cov}\{\eta(t), \eta(t)\}$ с учетом некоррелированности ν и $\xi(t), t \geqslant 0$ получаем

$$\begin{split} K_{\eta}(t) &= \Theta(t) \operatorname{cov}\{\nu, \nu\} \, \Theta^{*}(t) \,\, + \\ &+ \,\, \Theta(t) \int\limits_{0}^{t} \int\limits_{0}^{t} \operatorname{cov}\{\Theta^{-1}(\tau_{1})B(\tau_{1})\xi(\tau_{1}), \Theta^{-1}(\tau_{2})B(\tau_{2})\xi(\tau_{2})\} \, d\tau_{1} d\tau_{2} \, \Theta^{*}(t) = \\ &= \,\, \Theta(t) \left[R_{\nu} + \int\limits_{0}^{t} \int\limits_{0}^{t} \Theta^{-1}(\tau_{1})B(\tau_{1})R_{\xi}(\tau_{1}, \tau_{2})B^{*}(\tau_{2})(\Theta^{-1}(\tau_{2}))^{*} d\tau_{1} d\tau_{2}\right] \Theta^{*}(t), \end{split}$$

где $R_{\nu}=\mathbf{cov}\{\nu,\nu\}$, а $R_{\xi}(\tau_1,\tau_2)=\mathbf{cov}\{\xi(\tau_1),\xi(\tau_2)\}$. К сожалению, в общем случае матрица $K_{\eta}(t)$ не является решением какого-либо дифференциального уравнения.

Если же предположить, что $R_{\xi}(\tau_1,\tau_2)=V(\tau_1)\,\delta(\tau_2-\tau_1)$, где V(t) — функция, значениями которой являются неотрицательно-определенные матрицы, то говорят, что $\xi(t)$ — m-мерный белый шум c матрицей интенсивностей V(t). Подставив формально $R_{\xi}(\tau_1,\tau_2)$ в выражение для $K_n(t)$, получим

$$K_{\eta}(t) = \Theta(t) \left[R_{\nu} + \int_{0}^{t} \Theta^{-1}(\tau) B(\tau) V(\tau) B^{*}(\tau) (\Theta^{-1}(\tau))^{*} d\tau \right] \Theta^{*}(t). \quad (8.23)$$

Можно показать, используя определение матрицы $\Theta(t)$ и дифференцируя обе части (8.23) по t, что

$$\begin{cases} \dot{K}_{\eta}(t) = A(t)K_{\eta}(t) + K_{\eta}(t)A^{*}(t) + B(t)V(t)B^{*}(t), \\ K_{\eta}(0) = R_{\nu}. \end{cases}$$

Заметим, однако, что правомочность проделанных выкладок в рамках рассмотренной теории с.к.-интегрирования мы обосновать не можем. Это будет сделано далее, в §11, посвященном теории стохастических дифференциальных уравнений. ■

8.5. Задачи для самостоятельного решения.

1. Доказать, что $\eta(t)=\varphi(t)\xi(t)+\psi(t)$ — с.к.-непрерывная СФ, если $\varphi(t)$, $\psi(t)$ — непрерывные детерминированные функции, а $\xi(t)$ — с.к.-непрерывная СФ.

2. Пусть СФ $\xi(t)$ с.к.-непрерывна на конечном промежутке T=[a,b]. Доказать, что найдется такое конечное C, что $\mathbf{M}\big\{|\xi(t)|^2\big\}\leqslant C$ для любого $t\in T$.

3. Известно, что $\dot{\xi}(t)=0$ с вероятностью 1 при каждом $t\in T$. Показать, что в этом случае существует константа $c\in\mathbb{R}^1$, такая, что $\xi(t)=c$ (Р-п.н.) при каждом $t\in T$.

4. Найти с.к.-производную $\dot{\xi}(t)$ для СФ $\xi(t)=A\sin(\nu t+\varphi),$ где A,φ случайные величины с конечными вторыми моментами, а $\nu=$ const.

Ответ. $\dot{\xi}(t) = A\nu\cos(\nu t + \varphi)$.

5. Доказать, что из с.к.-дифференцируемости СФ $\xi(t)$ следует ее с.к.-непрерывность, а обратное утверждение неверно.

6. Доказать, что $R_{\xi\dot{\xi}}(t, au)=\mathbf{cov}\{\xi(t),\dot{\xi}(au)\}=rac{\partial R_{\xi}(t, au)}{\partial au}.$

7. Показать, что центрированная гауссовская случайная функция $\xi(t)$ $R_{\xi}(t,s)=(1+|t-s|)\,e^{-|t-s|}\,$ является с.к.-дифференцируемой, доказать независимость сечений $\xi(t)$ и $\dot{\xi}(t)$.

Указание. Показать, что $R_{\dot{\xi}}(t,s)=(1-|t-s|)\,e^{-|t-s|}$ и $R_{\xi\dot{\xi}}(t,s)=(t-s)\,e^{-|t-s|}$.

8. Пусть центрированная СФ $\xi(t)$ имеет ковариационную функцию

$$R_{\xi}(t, au)=\sigma^2 t au$$
. Вычислить $\mathbf{M}ig\{\eta^2ig\}$, где $\eta=\int\limits_0^T \xi(t)\sin(\pi t/T)\,dt$.

Ответ. $\sigma^2 T^4 / \pi^2$.

9. Привести пример СФ, которая не является с.к.-непрерывной на отрезке, но тем не менее с.к.-интегрируема на нем.

Указание. Воспользоваться результатом примера 8.2.

10. Доказать, что если СФ $\xi(t)$ с.к.-дифференцируема, а $\dot{\xi}(t)$ с.к.-непрерывна, то для с.к.-интеграла справедлива формула Ньютона–Лейбница:

$$\int_{t_0}^{t} \dot{\xi}(\tau) \, d\tau = \xi(t) - \xi(t_0) \quad (\mathbf{P}\text{-Π.H$.}).$$

Указание. См. пример 8.13.

11. Вычислить дисперсию интеграла $\eta(t)=\int\limits_0^t\xi(\tau)\,d\tau,$ если СФ $\xi(t)$ имеет ковариационную функцию $R_\xi(t,\tau)=De^{-\alpha|t-\tau|}.$

Ответ.
$$D_{\eta}(t) = \frac{2D}{\alpha} \left[t + \frac{1}{\alpha} (e^{-\alpha t} - 1) \right].$$

12. Пусть $\xi(t) = Ut + V$, где U, V — случайные величины с конечными вторыми моментами. Решить дифференциальное уравнение

$$\dot{\eta}(t) + \alpha \eta(t) = \beta \xi(t), \qquad \eta(0) = 0,$$

где
$$\alpha,\,\beta$$
 — постоянные коэффициенты. Ответ. $\eta(t)=\frac{\beta}{\alpha^2}\left(e^{-\alpha t}+t\alpha-1\right)U+\frac{\beta}{\alpha}\left(1-e^{-\alpha t}\right)V.$

§ 9. Стационарные случайные функции

9.1. Основные характеристики стационарных случайных функций. Рассмотрим комплексную гильбертову случайную функцию $\xi(t)$, где время t пробегает множество всех вещественных чи-

Определение 9.1. Случайная функция $\{\xi(t),\,t\in\mathbb{R}^1\}$ называется стационарной в широком смысле, если для любых $t, \tau \in \mathbb{R}^1$

$$\mathbf{M}\{\xi(t)\} = \mathbf{M}\{\xi(0)\}, \quad \mathbf{cov}\{\xi(t+\tau), \xi(\tau)\} = \mathbf{cov}\{\xi(t), \xi(0)\}. \quad (9.1)$$

В дальнейшем стационарные в широком смысле функции будем кратко называть cmauuoнарными cnyua"uными $\phi yhkuunu$ $(CC\Phi)$. Кроме того, не ограничивая общности, предположим, что $\mathbf{M}\{\xi(t)\}=0$.

Определение 9.2. Комплексная функция

$$R_{\mathcal{E}}(t) = \mathbf{cov}\{\xi(t), \xi(0)\}, \quad t \in \mathbb{R}^1, \tag{9.2}$$

называется ковариационной функцией стационарной случайной ϕ ункции $\xi(t)$.

Из (9.1), (9.2) следует, что для любых $t, s \in \mathbb{R}^1$

$$\operatorname{cov}\{\xi(t),\xi(s)\} = \mathbf{M}\{\xi(t)\overline{\xi(s)}\} = R_{\xi}(t-s).$$

Ковариационная функция $R_{\xi}(t)$ обладает свойствами, которые вытекают непосредственно из определения 9.2 и из общих свойств ковариационной функции (см. п. 2.2):

1) ковариационная функция является неотрицательно-определен- $\mathit{ной}$, т. е. для любых $z_1,\ldots,z_n\in\mathbb{C}$ и $t_1,\ldots,t_n\in\mathbb{R}^1,\,n\geqslant 1$, имеет место неравенство

$$\sum_{i=1}^{n} \sum_{j=1}^{n} z_i \overline{z}_j R_{\xi}(t_i - t_j) \geqslant 0;$$

2) дисперсия D_{ξ} ССФ $\xi(t)$ постоянна и имеет вид

$$D_{\xi} = R_{\xi}(0) = \mathbf{M}\{|\xi(0)|^2\} \geqslant 0;$$

3) ковариационная функция $R_{\varepsilon}(t)$ является эрмитовой, т. е.

$$R_{\xi}(-t) = \overline{R_{\xi}(t)}$$
 для всех $t \in \mathbb{R}^1$;

- 4) $|R_{\xi}(t)| \leqslant R_{\xi}(0)$ для всех $t \in \mathbb{R}^1$;
- 5) $|R_{\xi}(t) R_{\xi}(s)|^2 \leqslant 2R_{\xi}(0)[R_{\xi}(0) \operatorname{Re} R_{\xi}(t-s)]$ для всех $t, s \in \mathbb{R}^1$;
- 6) ковариационная функция непрерывна всюду на \mathbb{R}^1 , если она непрерывна в точке t=0.

Так же как и в случае дискретного времени, ковариационная функция CCФ имеет спектральное представление.

Теорема 9.1 (Бохнер, Хинчин). Пусть $\{\xi(t), t \in \mathbb{R}^1\}$ — ССФ с непрерывной ковариационной функцией $R_{\xi}(t)$. Тогда найдется однозначно определенная вещественная ограниченная, монотонно неубывающая функция $F_{\xi}(\lambda)$, $\lambda \in \mathbb{R}^1$, непрерывная справа на \mathbb{R}^1 и $F_{\xi}(-\infty) = 0$, такая, что

$$R_{\xi}(t) = \int_{-\infty}^{\infty} e^{i\lambda t} dF_{\xi}(\lambda), \quad t \in \mathbb{R}^{1}.$$
 (9.3)

Функция $F_{\xi}(\lambda)$, определенная в теореме 9.1, называется спектральной функцией ССФ $\xi(t)$. Если $F_{\xi}(\lambda)$ при каждом $\lambda \in \mathbb{R}^1$ представима в виде

$$F_{\xi}(\lambda) = \int_{0}^{\lambda} f_{\xi}(\nu) d\nu,$$

то вещественная функция $f_{\xi}(\nu)$ называется спектральной плотностью ССФ $\xi(t)$. В этом случае $f_{\xi}(\lambda)=\frac{d}{d\lambda}F_{\xi}(\lambda)$ почти всюду на \mathbb{R}^1 , причем в силу монотонности $F_{\xi}(\lambda)$ спектральная плотность $f_{\xi}(\lambda)$ неотрицательна. Кроме того, из (9.3) следует, что

$$R_{\xi}(t) = \int_{-\infty}^{\infty} e^{i\lambda t} f_{\xi}(\lambda) d\lambda, \quad t \in \mathbb{R}^{1},$$
 (9.4)

поэтому дисперсия стационарной функции $\xi(t)$ имеет вид

$$D_{\xi} = \int_{-\infty}^{\infty} f_{\xi}(\lambda) d\lambda = F_{\xi}(\infty).$$

Замечание. Введенные названия для спектральных характеристик $F_{\xi}(\lambda)$ и $f_{\xi}(\lambda)$ объясняются тем, что параметр $\lambda \in \mathbb{R}^1$ имеет смысл частоты, а представление (9.3), называемое спектральным разложением ковариационной функции, показывает распределение энергии стационарной функции по частотам спектра.

Связь спектральных характеристик с ковариационной функцией $CC\Phi$ описана в следующей теореме.

T е о р е м а 9.2. Пусть $\{\xi(t),\ t\in\mathbb{R}^1\}$ — стационарная случайная функция с непрерывной ковариационной функцией $R_{\xi}(t)$. Тогда

1) для любых точек непрерывности $\lambda, \mu, \lambda \leqslant \mu$ спектральной функции $F_{\xi}(\lambda)$ выполнено равенство

$$F_{\xi}(\mu) - F_{\xi}(\lambda) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-i\lambda t} - e^{-i\mu t}}{it} R_{\xi}(t) dt;$$

2) если ковариационная функция $R_{\xi}(t)$ интегрируема на \mathbb{R}^1 , т. е.

$$\int_{-\infty}^{\infty} |R_{\xi}(t)| \, dt < \infty, \tag{9.5}$$

то спектральная плотность $f_{\xi}(\lambda)$ существует и определяется обратным преобразованием Фурье ковариационной функции:

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda t} R_{\xi}(t) dt.$$
 (9.6)

Замечание. Для вещественной ССФ $\xi(t)$ ее ковариация $R_{\xi}(t)$ — вещественная функция, причем условие эрмитовости превращается в условие четности:

$$R_{\xi}(-t) = R_{\xi}(t), \quad t \in \mathbb{R}^1.$$

Тогда в силу (9.6) спектральная плотность принимает вид

$$f_{\xi}(\lambda) = \frac{1}{\pi} \int_{0}^{\infty} \cos \lambda t \, R_{\xi}(t) \, dt, \quad \lambda \in \mathbb{R}^{1},$$

поэтому $f_{\xi}(\lambda)$ также является четной функцией, т. е. $f_{\xi}(\lambda) = f_{\xi}(-\lambda)$, а спектральная функция $F_{\xi}(\lambda)$ имеет симметричные относительно нуля приращения:

$$F_{\xi}(\mu) - F_{\xi}(\lambda) = F_{\xi}(-\lambda) - F_{\xi}(-\mu), \quad \lambda \leqslant \mu.$$

В этом случае формула (9.4) принимает вид

$$R_{\xi}(t) = 2 \int_{0}^{\infty} \cos \lambda t \, f_{\xi}(\lambda) \, d\lambda, \quad t \in \mathbb{R}^{1}.$$
 (9.7)

Используя понятие интеграла по ортогональной стохастической мере (см. п. 14.8), можно получить спектральное представление для стационарной случайной функции, аналогичное разложению для стационарной последовательности.

T е о р е м а 9.3. Пусть $\{\xi(t),\ t\in\mathbb{R}^1\}$ — $CC\Phi$ с ковариационной функцией $R_\xi(t)$, допускающей спектральное разложение (9.3). Тогда существует такая ортогональная стохастическая мера $Z_\xi(d\lambda)$, определенная на борелевской σ -алгебре $\mathcal{B}(\mathbb{R}^1)$, что имеет место представление

$$\xi(t) = \int_{-\infty}^{\infty} e^{i\lambda t} Z_{\xi}(d\lambda), \quad t \in \mathbb{R}^{1},$$
(9.8)

при этом для любого борелевского множества $\Delta \in \mathcal{B}(\mathbb{R}^1)$

$$\mathbf{M}\{|Z_{\xi}(\Delta)|^{2}\} = \int_{\Delta} dF_{\xi}(\lambda). \tag{9.9}$$

Замечание. Если $\xi(t)$ имеет спектральную плотность $f_{\xi}(\lambda)$, то формула (9.9) принимает вид

$$\mathbf{M}\big\{|Z_{\xi}(\Delta)|^2\big\} = \int\limits_{\Delta} f_{\xi}(\lambda) \, d\lambda, \quad \Delta \in \mathcal{B}(\mathbb{R}^1).$$

9.2. Примеры $CC\Phi$. Приведем примеры некоторых наиболее часто встречающихся $CC\Phi$, поясняющие введенные выше определения и модели.

Пример 9.1. Спектральная плотность вещественной ССФ $\xi(t)$ имеет вид

$$f_{\xi}(\lambda) = \begin{cases} \frac{\sigma^2}{2\pi} & \text{при} & |\lambda| \leqslant \lambda_0, \\ 0 & \text{при} & |\lambda| > \lambda_0, \end{cases}$$

где $\lambda_0 > 0$. Вычислить ковариационную функцию и дисперсию $\xi(t)$.

Решение. В силу четности спектральной плотности по формуле (9.7) для $t \neq 0$ имеем

$$R_{\xi}(t) = 2 \int_{0}^{\infty} \cos \lambda t \, f_{\xi}(\lambda) \, d\lambda = \frac{\sigma^{2}}{\pi} \int_{0}^{\lambda_{0}} \cos \lambda t \, d\lambda = \frac{\sigma^{2}}{\pi t} \sin \lambda_{0} t;$$

$$D_{\xi} = R_{\xi}(0) = \frac{\sigma^2}{\pi} \int\limits_0^{\lambda_0} d\lambda = \frac{\sigma^2 \lambda_0}{\pi}.$$

Замечание. Отметим, что ковариационная функция обращается в нуль в точках $\tau_k = \pi k/\lambda_0$, $k \in \mathbb{Z}$. Это означает, что сечения $\xi(t)$, $\xi(t+\tau_k)$ — некоррелированные. Если λ_0 достаточно велико, то $\xi(t)$ называют *широкополосным белым шумом* и используют для аппроксимации белого шу ма с непрерывным временем (см. далее пример 9.3).

 Π ример 9.2. Существует ли стационарная случайная функция $\xi(t)$, имеющая ковариационную функцию

$$R_{\xi}(t) = \left\{ egin{array}{ll} \sigma^2 & ext{при} & |t| \leqslant t_0, \ 0 & ext{при} & |t| > t_0, \end{array}
ight.$$

где $\sigma > 0, t_0 > 0$?

Решение. Предположим, что такая ССФ существует. Так как ее ковариационная функция удовлетворяет (9.5), $\xi(t)$ должна иметь спектральную плотность

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda t} R_{\xi}(t) dt = \frac{\sigma^2}{\pi} \int_{0}^{t_0} \cos \lambda t dt = \frac{\sigma^2}{\pi \lambda} \sin \lambda t_0.$$

Теперь видно, что условие $f_{\xi}(\lambda) \geqslant 0$ не выполнено, поэтому $f_{\xi}(\lambda)$ не может быть спектральной плотностью. Таким образом, ССФ с заданной ковариационной функцией не существует.

 Π р и м е р 9.3. В гл. I обсуждалось понятие *стационарного белого шума* как процесса $\xi(t)$, имеющего ковариационную функцию

$$R_{\xi}(t) = \sigma^2 \delta(t).$$

Вычислить спектральную плотность для $\xi(t)$.

Решение. Формально применяя преобразование Фурье к дельтафункции, получаем

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda t} \sigma^2 \delta(t) dt = \frac{1}{2\pi} e^{-i\lambda t} \sigma^2 \bigg|_{t=0} = \frac{\sigma^2}{2\pi}, \quad \lambda \in \mathbb{R}^1. \quad \blacksquare$$

Замечание. В данном параграфе мы будем далее использовать понятие *стационарного белого шума* как процесса, имеющего постоянную спектральную плотность во всем диапазоне частот $-\infty < \lambda < \infty$.

 Π ример 9.4. Ковариационная функция $R_{\xi}(t)$ ССФ $\xi(t)$ имеет вид

$$R_{\xi}(t) = De^{-\alpha|t|},$$

где $D>0,\ \alpha>0.$ Показать, что $\xi(t)$ имеет спектральную плотность, и вычислить ее.

Решение. Функция $R_{\xi}(t)$ удовлетворяет условию интегрируемости (9.5), поэтому существует спектральная плотность

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda t} R_{\xi}(t) dt = \frac{D}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda t - \alpha|t|} dt =$$

$$=\frac{D}{2\pi}\int\limits_{0}^{\infty}\left(e^{-i\lambda t-\alpha t}+e^{i\lambda t-\alpha t}\right)dt=\frac{D}{2\pi}\left(\frac{1}{i\lambda+\alpha}+\frac{1}{-i\lambda+\alpha}\right)=\frac{D\alpha}{\pi(\alpha^2+\lambda^2)}. \quad \blacksquare$$

Замечание. Параметр α характеризует скорость уменьшения корреляции между сечениями, поскольку при $t\gg 1/\alpha$ выполняется $R_\xi(t)\approx 0$. Если сечения процесса не коррелируют при близких значениях $t,\,t',\,$ то такой процесс может быть хорошей моделью белого шума. Действительно, если D и α стремятся к бесконечности так, что $D/\alpha\to\sigma^2>0$, то спектральная плотность $f_\xi(\lambda)$ приближается к постоянной спектральной плотности σ^2/π во всем диапазоне частот $-\infty<\lambda<\infty$.

Пример 9.5. Пусть $\xi(t)=\xi(0)\,g(t)$, где $\mathbf{M}\{\xi(0)\}=0$, $\mathbf{D}\{\xi(0)\}=1$ и g(t) — некоторая комплексная неслучайная функция. При каких условиях на g(t) случайный процесс $\xi(t)$ стационарен? Определить ковариационную функцию такого процесса.

Решение. Из условия стационарности получаем соотношение

$$g(t)\overline{g(s)} = g(t-s)\overline{g(0)},$$

откуда (если использовать представление функции $g(t) = \rho(t)\,e^{i\varphi(t)})$ вытекает, что

$$\rho(t) = |g(0)| = 1, \qquad \varphi(t) - \varphi(t - s) = \varphi(s) - \varphi(0).$$

Если предположить, что $\varphi(t)$ дифференцируема в точке t=0, то

$$\frac{d}{dt}\varphi(t) = \frac{d}{dt}\varphi(t)\Big|_{t=0} = \lambda_0,$$

откуда следует, что

$$q(t) = e^{i\lambda_0 t}$$
.

Поэтому ковариационная функция процесса $\xi(t)=\xi(0)\,e^{i\lambda_0t}$ принимает вид

$$R_{\mathcal{E}}(t) = e^{i\lambda_0 t}$$
.

Пример стационарной случайной функции можно построить, задав ее непосредственное разложение по гармоническим функциям. Следующий пример является обобщением предыдущего.

Пример 9.6. Рассмотрим случайную функцию

$$\xi(t) = \sum_{k=1}^{\infty} z_k e^{i\lambda_k t}, \quad t \in \mathbb{R}^1,$$

где $-\infty < \lambda_k < \infty$ — неслучайные различные числа, а z_k — некоррелированные случайные величины, такие, что $\mathbf{M}\{z_k\}=0$ и

$$\sum_{k=1}^{\infty} \mathbf{M}\left\{|z_k|^2\right\} < \infty. \tag{9.10}$$

Показать, что $\xi(t)$ стационарна, определить ее ковариационную функцию и построить ее спектральное разложение.

Решение. Ряд $\xi(t)=\sum_{k=1}^{\infty}z_ke^{i\lambda_kt}$ сходится в среднеквадратическом смысле для любого $t\in\mathbb{R}^1$ в силу условия (9.10). Из условия центрированности и некоррелированности величин $\{z_k\}$ получаем $\mathbf{M}\{\xi(t)\}=0$ и

$$\begin{aligned} \mathbf{cov}\{\xi(t),\xi(s)\} &= \mathbf{M}\Big\{\sum_{k=1}^{\infty} z_k e^{i\lambda_k t} \sum_{l=1}^{\infty} \overline{z}_l e^{-i\lambda_l s}\Big\} = \\ &= \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \mathbf{M}\{z_k \overline{z}_l\} e^{i(\lambda_k t - \lambda_l s)} = \sum_{k=1}^{\infty} \sigma_k^2 e^{i\lambda_k (t-s)}, \end{aligned}$$

где $\sigma_k^2 = \mathbf{M}\{|z_k|^2\}$. Таким образом, случайная функция $\xi(t)$ является стационарной, а ее ковариационная функция имеет вид

$$R_{\xi}(t) = \sum_{k=1}^{\infty} \sigma_k^2 e^{i\lambda_k t}.$$
 (9.11)

Соотношение (9.11) задает спектральное разложение для $R_{\xi}(t)$ и определяет соответствующую спектральную функцию

$$F_{\xi}(\lambda) = \sum_{k : \lambda_k \leqslant \lambda} \sigma_k^2.$$

Функция $F_{\xi}(\lambda)$ — кусочно непрерывная со скачками (в точках λ_k), равными $F_{\xi}(\lambda_k) - F_{\xi}(\lambda_k -) = \sigma_k^2, k = 1, 2, \dots$ Заметим также, что формула, задающая $\xi(t)$ в условии данного примера, описывает спектральное разложение $\xi(t)$ вида (9.8), где ортогональная стохастическая мера определяется выражением $Z_{\xi}(B) = \sum_{k \colon \lambda_k \in B} z_k$ для любого множества $B \in \mathcal{B}(\mathbb{R}^1)$.

Следующий пример описывает модель, которая часто используется в теории случайных процессов, связанных с передачей информации, моделями надежности и массового обслуживания.

Пример 9.7. Пусть $0=\tau_0\leqslant\tau_1\leqslant\tau_2\leqslant\ldots$ — случайные моменты времени, образующие nyaccono вский $nomo\kappa$ интенсивности $\lambda_0>0$, т. е. $\{\tau_{k+1}-\tau_k,\ k=0,1,2,\ldots\}$ независимы и распределены по экспоненциальному закону с параметром λ_0 . Случайная функция $\xi(t)$ имеет следующую структуру:

$$\xi(t) = V_k$$
, при $t \in [\tau_k, \tau_{k+1})$, $k = 0, 1, 2, \dots$

где $\{V_k\}$ — последовательность центрированных некоррелированных случайных величин с одинаковыми дисперсиями $\mathbf{D}\{V_k\}=D>0$. Предположим также, что величины $\{V_k\}$ не зависят от моментов времени $\{\tau_j\}$. Показать, что случайная функция $\xi(t)$ является стационарной, и вычислить $R_{\xi}(t)$, $f_{\xi}(\lambda)$.

Решение. Пуассоновский поток будет подробно описан в п. 12.1. Здесь же нам понадобится следующее его свойство: если X — случайное число точек потока $\{\tau_k\}$, попавших в промежуток [s,t), где $0\leqslant s< t$, то X имеет распределение Пуассона с параметром $\delta=\lambda_0|t-s|$:

$$\mathbf{P}{X = m} = \frac{\delta^m e^{-\delta}}{m!}, \quad m = 0, 1, 2, \dots$$

Для фиксированного $t\geqslant 0$ события $H_k(t)=\{t\in [\tau_k,\tau_{k+1})\},\ k=0,1,2,\ldots$, образуют систему вероятностных гипотез (см. п. 14.1). Тогда, применяя формулу полного математического ожидания, получаем

$$\begin{split} \mathbf{M}\{\xi(t)\} &= \sum_{k=0}^{\infty} \mathbf{M}\{\xi(t) \mid H_k(t)\} \; \mathbf{P}\{H_k(t)\} = \\ &= \sum_{k=0}^{\infty} \mathbf{M}\{V_k \mid H_k(t)\} \; \mathbf{P}\{H_k(t)\} = \sum_{k=0}^{\infty} \mathbf{M}\{V_k\} \; \mathbf{P}\{H_k(t)\} = 0. \end{split}$$

Для заданных $0 \leqslant s < t$ события $\{H_k(s)H_l(t), k, l = 0, 1, 2, \dots\}$ — также система вероятностных гипотез, поэтому

$$\begin{aligned} \mathbf{cov}\{\xi(t), \xi(s)\} &= \mathbf{M}\{\xi(t)\xi(s)\} = \\ &= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \mathbf{M}\{\xi(t)\xi(s) \mid H_{k}(s)H_{l}(t)\} \, \mathbf{P}\{H_{k}(s)H_{l}(t)\} \, , \end{aligned}$$

где при k=l

$$\mathbf{M}\{\xi(t)\xi(s)\mid H_k(s)H_k(t)\}=\mathbf{M}\big\{V_k^2\mid H_k(s)H_k(t)\big\}=\mathbf{M}\big\{V_k^2\big\}=D,$$
а при $k\neq l$

$$\mathbf{M}\{\xi(t)\xi(s) \mid H_k(s)H_l(t)\} = \mathbf{M}\{V_kV_l \mid H_k(s)H_l(t)\} = \mathbf{M}\{V_kV_l\} = 0.$$

Тогда $\mathbf{cov}\{\xi(t),\xi(s)\}=D\mathbf{P}\{H\}$, где событие H имеет вид

$$H=\bigcup_{k=0}^{\infty}H_k(s)H_k(t)=\{\tau_k\notin [s,t)$$
ни при каком $k\geqslant 1\}=\{X=0\}.$

Следовательно, $\mathbf{cov}\{\xi(t),\xi(s)\} = De^{-\lambda_0|t-s|} = R_\xi(t-s)$. Таким образом, $\xi(t)$ — ССФ с ковариационной функцией $R_\xi(t) = De^{-\lambda_0|t|}$ и спектральной плотностью $f_\xi(\lambda) = \frac{D\lambda_0}{\pi(\lambda_0^2 + \lambda^2)}$ (в силу примера 9.4).

Замечание. Если в условиях примера 9.7 величины $\{V_k\}$ имеют распределение $\mathbf{P}\{V_k=1\}=\mathbf{P}\{V_k=-1\}=1/2$, то случайный процесс $\xi(t)$ называют телеграфным сигналом.

9.3. Линейные преобразования ССФ. Представим себе некоторую систему \mathcal{S} , осуществляющую преобразование сигналов, т.е. функций, зависящих от времени. Функция, которая должна быть преобразована, называется exodom, а функция, которая получается в результате преобразования, называется exodom системы \mathcal{S} . Всякая система задается классом \mathcal{L} допустимых функций на входе и оператором L(X) = Y, где X — допустимый вход, а Y — соответствующий выход системы.

Определение 9.3. Система называется линейной, если

- 1) класс \mathcal{L} есть линейное пространство;
- 2) оператор L является линейным, т.е. удовлетворяет принципу суперпозиции:

$$L(\alpha X_1 + \beta X_2) = \alpha L(X_1) + \beta L(X_2) \quad \forall \alpha, \beta \in \mathbb{R}^1, X_1, X_2 \in \mathcal{L}.$$

Оператор L называют также линейным преобразованием.

Пусть ССФ $\xi(t)$ имеет спектральное разложение (9.8) в виде интеграла по ортогональной стохастической мере $Z_{\xi}(d\lambda)$, а $F_{\xi}(\lambda)$ — ее спектральная функция. Пусть также задана некоторая комплексная функция $\Phi(\lambda)$, $\lambda \in \mathbb{R}^1$, такая, что

$$\int_{-\infty}^{\infty} |\Phi(\lambda)|^2 dF_{\xi}(\lambda) < \infty. \tag{9.12}$$

Определение 9.4. Если случайная функция $\{\zeta(t),\ t\in\mathbb{R}^1\}$ допускает представление

$$\zeta(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(\lambda) Z_{\xi}(d\lambda), \qquad (9.13)$$

где $\Phi(\lambda)$ удовлетворяет условию (9.12), то говорят, что $\zeta(t)$ получена из $\xi(t)$ с помощью *стационарного линейного преобразования*. Функция $\Phi(\lambda)$ в (9.13) называется *частотной характеристикой* этого преобразования.

Непосредственными вычислениями нетрудно убедиться, что

$$D_{\zeta} = \int_{-\infty}^{\infty} |\Phi(\lambda)|^2 dF_{\xi}(\lambda), \qquad (9.14)$$

$$F_{\zeta}(\lambda) = \int_{-\infty}^{\lambda} |\Phi(\nu)|^2 dF_{\xi}(\nu), \quad \lambda \in \mathbb{R}^1.$$
 (9.15)

Если же ССФ имеет спектральную плотность $f_{\xi}(\lambda)$, то $\zeta(t)$ также имеет спектральную плотность $f_{\zeta}(\lambda)$, причем

$$f_{\zeta}(\lambda) = |\Phi(\lambda)|^2 f_{\xi}(\lambda), \quad \lambda \in \mathbb{R}^1.$$
 (9.16)

Если функция $\Phi(\lambda)$ удовлетворяет (9.12), то процесс $\zeta(t)$ также является стационарным, причем соотношение (9.13) задает его спектральное представление. Из свойств стохастического интеграла (см. п. 14.9) следует, что ковариационная функция процесса $\zeta(t)$ равна

$$R_{\zeta}(t) = \mathbf{cov}\{\zeta(t), \zeta(0)\} = \int_{-\infty}^{\infty} e^{i\lambda t} |\Phi(\lambda)|^2 dF_{\xi}(\lambda).$$
 (9.17)

Замечание. Аналогично случаю дискретного времени (см. п. 3.3), можно показать, что для всякого $t \in \mathbb{R}^1$ процесс $\zeta(t)$, удовлетворяющий (9.13), является либо линейной комбинацией некоторых

сечений ССФ $\xi(t)$, либо с.к.-пределом таких комбинаций. Этим и объясняется использование термина «линейное преобразование» для обозначения (9.13). Заметим также, что если линейному преобразованию подвергается гауссовская случайная функция $\xi(t)$, а результатом преобразования является вещественная случайная функция $\zeta(t)$, то $\zeta(t)$ — также гауссовская.

В прикладных задачах линейные преобразования обычно задаются не в частотной форме (9.13), а во временной. Приведенные ниже примеры показывают, как устанавливается соответствующая связымежду этими описаниями, а также поясняются соотношения между временными и частотными характеристиками линейных стационарных преобразований.

Пример 9.8. Пусть процесс $\zeta(t)$ получен из $\xi(t)$ преобразованием сдвига по времени на $T \in \mathbb{R}^1$, т. е.

$$\zeta(t) = \xi(t+T), \quad t \in \mathbb{R}^1. \tag{9.18}$$

Показать, что (9.18) — стационарное линейное преобразование, и найти его частотную характеристику.

Решение. В силу спектрального представления (9.8)

$$\zeta(t) = \xi(t+T) = \int_{-\infty}^{\infty} e^{i\lambda(t+T)} Z_{\xi}(d\lambda),$$

поэтому функция $\Phi(\lambda)=e^{i\lambda T}$ есть частотная характеристика этого преобразования. \blacksquare

 Π ример 9.9. Пусть задана функция h(t), такая, что

$$\int_{-\infty}^{\infty} |h(t)| \, dt < \infty. \tag{9.19}$$

Показать, что с.к.-интегральное преобразование ССФ $\{\xi(s), s \in \mathbb{R}^1\}$

$$\zeta(t) = \int_{-\infty}^{\infty} h(t-s)\xi(s) ds, \quad t \in \mathbb{R}^{1},$$
 (9.20)

является линейным стационарным преобразованием, и найти $\Phi(\lambda)$. Решение. Покажем, что $\zeta(t)$ — гильбертов процесс:

$$\begin{split} \mathbf{M} \big\{ |\zeta(t)|^2 \big\} &= \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} h(t-s_1) R_{\xi}(s_1-s_2) \overline{h(t-s_2)} \, ds_1 ds_2 \leqslant \\ &\leqslant \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} |h(t-s_1)| \, D_{\xi} \, |\overline{h(t-s_2)}| \, ds_1 ds_2 = D_{\xi} \Big(\int\limits_{-\infty}^{\infty} |h(s)| \, ds \Big)^2 < \infty. \end{split}$$

12 Б.М. Миллер и А.Р. Панков

Поэтому
$$\mathbf{M}\{\zeta(t)\}=\int\limits_{-\infty}^{\infty}h(t-s)\,m_{\xi}\,ds=0$$
, так как $m_{\xi}=0$. Если $\xi(s)=\int\limits_{-\infty}^{\infty}e^{i\lambda s}\,Z_{\xi}(d\lambda)$, то

$$\zeta(t) = \int_{-\infty}^{\infty} h(t-s) \Big(\int_{-\infty}^{\infty} e^{i\lambda s} Z_{\xi}(d\lambda) \Big) ds = \int_{-\infty}^{\infty} e^{i\lambda s} \Phi(\lambda) Z_{\xi}(d\lambda),$$

где
$$\Phi(\lambda) = \int\limits_{-\infty}^{\infty} h(s)e^{-i\lambda s}\,ds$$
, причем

$$\int_{-\infty}^{\infty} |\Phi(\lambda)|^2 dF_{\xi}(\lambda) = \mathbf{M}\{|\zeta(t)|^2\} < \infty.$$

Следовательно, (9.20) — стационарное линейное преобразование с указанной частотной характеристикой $\Phi(\lambda)$.

Замечание. Стационарное линейное преобразование (9.20) широко используется при решении разнообразных прикладных задач, связанных с обработкой информации. При этом h(t) обычно называется весовой функцией преобразования или импульсным откликом.

Пример 9.10. Пусть процесс $\xi(t)$ с.к.-дифференцируем. Найти частотную характеристику преобразования $\xi(t)\mapsto \frac{d}{dt}\xi(t)=\dot{\xi}(t)$ и ковариационную функцию процесса $\dot{\xi}(t)$.

Решение. Из общих условий дифференцируемости в среднем квадратическом следует (см. п. 8.2), что если стационарный случай-

квадратическом следует (см. п. 8.2), что если стационарный случайный процесс с.к.-дифференцируем, то существует
$$\frac{\partial^2 R_{\xi}(t-s)}{\partial t \partial s}\bigg|_{t=s= au}$$

для любого $\tau \in \mathbb{R}^1$. Последнее равносильно существованию $R_{\xi}^{''}(0),$ что, в свою очередь, эквивалентно условию

$$-R_{\xi}^{"}(0) = \int_{-\infty}^{\infty} \lambda^2 dF_{\xi}(\lambda) < \infty. \tag{9.21}$$

Воспользовавшись результатом примера 9.8, получаем

$$\frac{\xi(t+h) - \xi(t)}{h} = \int_{-\infty}^{\infty} \frac{e^{i\lambda h} - 1}{h} e^{i\lambda t} Z_{\xi}(d\lambda). \tag{9.22}$$

Среднеквадратические пределы при $h \to 0$ в левой и правой частях соотношения (9.22) существуют в силу предположения об с.к.-дифференцируемости $\xi(t)$ и условия (9.21). Итак,

$$\dot{\xi}(t) = \int_{-\infty}^{\infty} i\lambda \, e^{i\lambda t} \, Z_{\xi}(d\lambda). \tag{9.23}$$

Таким образом, процесс $\dot{\xi}(t)$ получен из процесса $\xi(t)$ с помощью линейного преобразования, имеющего частотную характеристику $\Phi(\lambda)=i\lambda$. В силу условия (9.21) случайный процесс $\dot{\xi}(t)$ является стационарным, имеет $\mathbf{M}\{\dot{\xi}(t)\}=0$ и ковариационную функцию

$$R_{\dot{\xi}}(t) = \mathbf{cov}\{\dot{\xi}(t), \dot{\xi}(0)\} = \int_{-\infty}^{\infty} e^{i\lambda t} \lambda^2 dF_{\xi}(\lambda). \quad \blacksquare$$

Пример 9.11. Предположим, что стационарный процесс Y(t) n раз с.к.-дифференцируем. Мы хотим найти m раз с.к.-дифференцируемый процесс X(t), связанный с Y(t) линейным дифференциальным уравнением c постоянными коэффициентами

$$\sum_{i=0}^{m} b_j X^{(j)}(t) = \sum_{k=0}^{n} a_k Y^{(k)}(t), \tag{9.24}$$

где a_k, b_j — заданные константы. Требуется определить условия, при которых X(t) — стационарный случайный процесс, и найти частотную характеристику преобразования $Y(t) \mapsto X(t)$, определяемого (9.24).

Решение. Найдем представление для X(t) в виде линейного преобразования процесса Y(t) с некоторой частотной характеристикой $\Phi(\lambda)$:

$$X(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(\lambda) Z_Y(d\lambda),$$

где $Z_Y(d\lambda)$ — ортогональная стохастическая мера, дающая разложение Y(t). Используя спектральное представление для оператора дифференцирования (9.23), получаем

$$X^{(k)}(t) = \int_{-\infty}^{\infty} e^{i\lambda t} (i\lambda)^k \Phi(\lambda) Z_Y(d\lambda), \quad Y^{(k)}(t) = \int_{-\infty}^{\infty} e^{i\lambda t} (i\lambda)^k Z_Y(d\lambda),$$

откуда

$$\sum_{j=0}^{m} b_{j} X^{(j)}(t) = \int_{-\infty}^{\infty} e^{i\lambda t} B(i\lambda) \Phi(\lambda) Z_{Y}(d\lambda),$$

$$\sum_{k=0}^{n} a_k Y^{(k)}(t) = \int_{-\infty}^{\infty} e^{i\lambda t} A(i\lambda) Z_Y(d\lambda),$$

где A(z) и B(z) — алгебраические многочлены вида

$$A(z) = \sum_{k=0}^{n} a_k z^k, \qquad B(z) = \sum_{j=0}^{m} b_j z^j.$$

Предположим, что многочлен B(z) не имеет чисто мнимых корней, тогда

$$\Phi(\lambda) = \frac{A(i\lambda)}{B(i\lambda)}.$$

По построению X(t) существует и является стационарным, если его дисперсия конечна, т. е.

$$\mathbf{M}\{|X(t)|^2\} = \int_{-\infty}^{\infty} \left| \frac{A(i\lambda)}{B(i\lambda)} \right|^2 dF_Y(\lambda) < \infty.$$

Если процесс Y(t) имеет спектральную плотность $f_Y(\lambda)$, то процесс X(t) также имеет спектральную плотность $f_X(\lambda) = \left| \frac{A(i\lambda)}{B(i\lambda)} \right|^2 f_Y(\lambda)$.

Пример 9.12. Пусть линейная система описывается уравнением

$$a_1 \dot{X}(t) + a_0 X(t) = Y(t),$$

где входной сигнал Y(t) — стационарный процесс, имеющий $m_Y=0$ и спектральную плотность $f_Y(\lambda)=\frac{D\alpha}{\pi(\alpha^2+\lambda^2)}.$ Найти спектральную плотность и ковариационную функцию процесса X(t).

Pе шение. Среднее значение процесса $m_X=0$. Частотная характеристика и квадрат ее модуля имеют вид

$$\Phi(\lambda) = \frac{1}{a_0 + i\lambda a_1}, \qquad |\Phi(\lambda)|^2 = \frac{1}{a_0^2 + a_1^2\lambda^2}.$$

Спектральная плотность процесса X(t) следует из (9.16):

$$f_X(\lambda) = \frac{D\alpha}{\pi(\alpha^2 + \lambda^2)(a_0^2 + a_1^2 \lambda^2)}.$$

Ковариационная функция процесса X(t) при $\alpha < a_0/a_1$ есть

$$R_X(t) = \int_{-\infty}^{\infty} e^{i\lambda t} f_X(\lambda) d\lambda = G e^{-\alpha_0|t|} \left[\operatorname{ch} \left(\beta_0 t\right) + \frac{\alpha_0}{\beta_0} \operatorname{sh} \left(\beta_0 |t|\right) \right],$$

где

$$\alpha_0 = \frac{1}{2} \left[\alpha + \frac{a_0}{a_1} \right], \quad \beta_0 = \frac{1}{2} \left[\frac{a_0}{a_1} - \alpha \right], \quad G = \frac{D}{a_0(\alpha a_1 + a_0)}.$$

Поэтому $D_X = R_X(0) = G$ — дисперсия процесса X(t).

Замечание. Если в (9.20) h(t)=0 при t<0, то линейное преобразование называется физически реализуемым (фильтром), поскольку в этом случае выходной сигнал $\zeta(t)$ зависит лишь от прошлых значений входного сигнала $\xi(s)$ при $s\leqslant t$.

Рассмотрим пример фильтра, обеспечивающего «экспоненциальное забывание» прошлой информации.

Пример 9.13. Пусть задана весовая функция линейного преобразования (9.20)

$$h(t) = \begin{cases} \frac{1}{T} e^{-t/T} & \text{при} \quad t \geqslant 0, \\ 0 & \text{при} \quad t < 0, \end{cases}$$

где T>0 — параметр, определяющий скорость «забывания». Входной сигнал Y(t) имеет спектральную плотность $f_Y(\lambda)=\frac{D\alpha}{\pi(\alpha^2+\lambda^2)}$. Найти спектральную плотность и дисперсию выходного сигнала

$$X(t) = \int_{-\infty}^{\infty} h(t-s)Y(s) ds.$$

Решение. Из примера 9.9 следует

$$\Phi(\lambda) = \int_{-\infty}^{\infty} h(s)e^{-i\lambda s} ds = \int_{0}^{\infty} \frac{1}{T}e^{-t(1/T+i\lambda)} dt = \frac{1}{1+i\lambda T}.$$

Спектральная плотность процесса X(t) имеет вид

$$f_X(\lambda) = |\Phi(\lambda)|^2 f_Y(\lambda) = \frac{1}{1 + (\lambda T)^2} \cdot \frac{D\alpha}{\pi(\alpha^2 + \lambda^2)}.$$

Применяя результат примера 9.12 при $a_0 = 1$, $a_1 = T$, получаем

$$D_X = R_X(0) = \frac{D}{1 + \alpha T}. \quad \blacksquare$$

Замечание. Процесс $\xi(t)$ есть результат прохождения стандартного белого шума через физически реализуемый линейный фильтр с импульсным откликом h(t), если спектральная плотность процесса $\xi(t)$ допускает представление

$$f_{\xi}(\lambda) = \frac{1}{2\pi} |\Phi(\lambda)|^2, \tag{9.25}$$

где
$$\Phi(\lambda) = \int\limits_0^\infty h(t) e^{-i\lambda t} \, dt, \int\limits_0^\infty |h(t)| \, dt < \infty.$$

Действительно, такой спектральной плотностью обладает процесс $\xi(t)$, который получен при прохождении через фильтр с частотной характеристикой $\Phi(\lambda)$ стационарного процесса v(t) с постоянной спектральной плотностью, равной $1/2\pi$. В силу примера 9.3 процесс v(t) является стандартным белым шумом (т. е. $\sigma^2=1$).

Условие возможности представления некоторого стационарного процесса в виде результата прохождения белого шума через физически реализуемый фильтр определяется следующей теоремой.

T е о р е м а 9.4. Для того чтобы неотрицательная функция $f(\lambda)$ допускала представление (9.25), необходимо и достаточно, чтобы выполнялось условие

$$\int_{-\infty}^{\infty} \frac{\ln f(\lambda)}{1 + \lambda^2} d\lambda > -\infty. \tag{9.26}$$

В заключение рассмотрим два примера использования теории стационарных линейных преобразований в задачах обработки сигналов. Дело в том, что многие операции численной обработки сигналов могут быть сведены к линейным стационарным преобразованиям. Если входной сигнал можно представить как сумму некоторого детерминированного процесса (полезного сигнала) и стационарного случайного процесса (шума), то результат обработки также есть сумма полезного выходного сигнала и шума, а его характеристики можно определить с помощью данной теории. В качестве первого примера рассмотрим задачу численного дифференцирования.

Пример 9.14. Пусть случайная функция

$$Y(t) = f(t) + \xi(t),$$

где f(t) — некоторая неслучайная дифференцируемая функция (полезный сигнал), а $\xi(t)$ — центрированная ССФ (помеха) с дисперсией $D_\xi=\sigma^2$ и постоянной на $[-\lambda_0,\lambda_0]$ спектральной плотностью

$$f_{\xi}(\lambda) = \left\{ egin{array}{ll} rac{\sigma^2}{2\lambda_0} & ext{при} & |\lambda| \leqslant \lambda_0, \ 0 & ext{при} & |\lambda| > \lambda_0, \end{array}
ight.$$

подвергается численному дифференцированию с шагом h > 0:

$$X(t) = \frac{Y(t+h) - Y(t)}{h}.$$
 (9.27)

Вычислить $m_X(t)$, $D_X(t)$ при $h \to 0$.

Решение. В силу линейности преобразования (9.27)

$$X(t) = \frac{f(t+h) - f(t)}{h} + \frac{\xi(t+h) - \xi(t)}{h} = X_1(t) + X_2(t),$$

где первый сигнал является детерминированным, а второй случайным, причем

$$\mathbf{M}\{X_2(t)\} = \mathbf{M}\left\{\frac{\xi(t+h) - \xi(t)}{h}\right\} = \frac{\mathbf{M}\{\xi(t+h)\} - \mathbf{M}\{\xi(t)\}}{h} = 0.$$

Поэтому

$$m_X(t) = \mathbf{M}\{X(t)\} = \frac{f(t+h) - f(t)}{h} \to f^{'}(t)$$
 при $h \to 0$,

а $D_X(t)=D_{X_2}(t)$, так как $D_{X_1}(t)=0$. Процесс $X_2(t)$ есть результат линейного преобразования стационарного случайного шума $\xi(t)$. Воспользовавшись его спектральным представлением $\xi(t)=\int\limits_{-\infty}^{\infty}e^{i\lambda t}\,Z_{\xi}(d\lambda)$, получаем

представлением
$$\xi(t) = \int_{-\infty}^{\infty} e^{i\lambda t} Z_{\xi}(d\lambda)$$
, получаем

$$X_2(t) = \frac{\xi(t+h) - \xi(t)}{h} = \int_{-\infty}^{\infty} \frac{e^{i\lambda(t+h)} - e^{i\lambda t}}{h} Z_{\xi}(d\lambda) = \int_{-\infty}^{\infty} \Phi(\lambda) e^{i\lambda t} Z_{\xi}(d\lambda),$$

где частотная характеристика $\Phi(\lambda)$ преобразования (9.27) и квадрат ее модуля имеют вид

$$\Phi(\lambda) = \frac{e^{i\lambda h} - 1}{h}, \qquad |\Phi(\lambda)|^2 = \frac{2(1 - \cos \lambda h)}{h^2}.$$

Поэтому $f_{X_2}(\lambda) = \frac{2(1-\cos\lambda h)}{h^2} f_{\xi}(\lambda)$ — спектральная плотность процесса $X_2(t)$. Тогда

$$\begin{split} D_{X_2} &= D_X = \int\limits_{-\infty}^{\infty} \frac{2(1-\cos\lambda h)}{h^2} f_{\xi}(\lambda) \, d\lambda = \frac{2\sigma^2}{\lambda_0 h^2} \int\limits_{0}^{\lambda_0} \left(1-\cos\lambda h\right) d\lambda = \\ &= \frac{2\sigma^2}{h^2} \left(1-\frac{\sin(\lambda_0 h)}{\lambda_0 h}\right) \to \frac{\sigma^2 \lambda_0^2}{3} \quad \text{при} \quad h \to 0. \quad \blacksquare \end{split}$$

Замечание. Таким образом, при численном дифференцировании дисперсия шума выходного сигнала мало зависит от шага дифференцирования h, а определяется в основном шириной λ_0 спектра помехи во входном сигнале. Более того, даже при очень малой дисперсии σ^2 этой помехи дисперсия выходного сигнала может быть большой, если помеха — широкополосный белый шум (т. е. $\lambda_0 \gg 1$). Полученный результат объясняет неудачные попытки продифференцировать сигнал прежде, чем он отфильтрован от помехи.

Пример 9.15. Следящая система радиолокатора описывается уравнением

$$\dot{y}(t) = k \,\varepsilon(t), \quad k > 0, \tag{9.28}$$

где $\varepsilon(t)=x(t)-y(t)+v(t)$ — рассогласование; y(t) — выходной сигнал; $x(t)=V_0+V_1t+V_2t^2$ — полезный сигнал, V_0,V_1,V_2 — независимые гауссовские случайные величины с параметрами $m_0=4\cdot 10^4$ м, $m_1=m_2=0,\ \sigma_0=10^4$ м, $\sigma_1=150\,\mathrm{m/c},\ \sigma_2=2\,\mathrm{m/c^2};\ v(t)$ — гауссовская стационарная помеха, не коррелирующая с сигналом x(t) и имеющая параметры $m_v=0$ и $R_v(\tau)=Ae^{-\alpha|\tau|},\$ где $A=360\,\mathrm{m^2},\ \alpha=50\,\mathrm{c^{-1}};\ k=25\,\mathrm{c^{-1}}$ — коэффициент усиления.

Требуется найти математическое ожидание и среднее квадратическое отклонение погрешности воспроизведения следящей системой полезного сигнала x(t).

Решение. Пусть S(t)=x(t)-y(t) — случайная ошибка воспроизведения x(t). Тогда $\sigma_S=\mathbf{M}\big\{S^2(t)\big\}^{1/2}$ — искомая величина. Из (9.28) с учетом выражения для $\varepsilon(t)$ следует

$$\frac{1}{k}\dot{y}(t) + y(t) = x(t) + v(t). \tag{9.29}$$

Из предыдущих примеров следует, что (9.29) описывает линейную стационарную систему. Пусть $y(t)=y_1(t)+\Delta(t)$, где $y_1(t)$ описывает прохождение через систему полезного сигнала x(t), а $\Delta(t)$ — прохождение помехи v(t). Очевидно, $\frac{1}{k}\dot{y}_1(t)+y_1(t)=x(t)$, откуда $y_1(t)=c_0+c_1t+c_2t^2$, где

$$c_0 = V_0 - V_1/k + 2V_2/k^2$$
, $c_1 = V_1 - 2V_2/k$, $c_2 = V_2$.

Пусть $\Delta x(t) = x(t) - y_1(t)$ — искажение системой полезного сигнала, тогда

$$\Delta x(t) = \frac{V_1}{k} + \frac{2V_2}{k} \left(t - \frac{1}{k} \right). \tag{9.30}$$

Из (9.30) следует, что $\mathbf{M}\{\Delta x(t)\}=0$, $\mathbf{D}\{\Delta x(t)\}=\frac{\sigma_1^2}{k^2}+\frac{4\,\sigma_2^2}{k^2}\Big(t-\frac{1}{k}\Big)^2==36+0.0256\,(t-0.04)^2\approx 36\,\mathrm{m}^2$ (т. е. слабо зависит от t).

Вычислим теперь дисперсию «остатка от помехи» $\Delta(t)$. Частотная характеристика преобразования (9.28): $\Phi(\lambda) = \frac{k}{k+i\lambda}$, а спектральная плотность помехи v(t) равна $f_v(\lambda)=\frac{A\alpha}{\pi(\alpha^2+\lambda^2)}$. Отсюда следует, что спектральная плотность $\Delta(t)$ имеет вид

$$f_{\Delta}(\lambda) = |\Phi(\lambda)|^2 f_v(\lambda) = \frac{A\alpha k^2}{\pi(\alpha^2 + \lambda^2)(k^2 + \lambda^2)}.$$

Поэтому

$$D_{\Delta} = \mathbf{D}\{\Delta(t)\} = \int\limits_{-\infty}^{\infty} f_{\Delta}(\lambda) \, d\lambda = \frac{A\alpha k^2}{\pi} \int\limits_{-\infty}^{\infty} \frac{d\lambda}{(\alpha^2 + \lambda^2)(k^2 + \lambda^2)} = \frac{A\alpha k^2}{\pi} \, I.$$

Для вычисление интеграла I воспользуемся формулами из п. 15.2:

$$I = \int_{-\infty}^{\infty} \frac{g(i\lambda)}{h(i\lambda)h(-i\lambda)} d\lambda,$$

где $g(z) = 1, h(z) = z^2 + (\alpha + k)z + \alpha k$, причем многочлен h(z) устойчивый, т. е. его корни лежат в левой полуплоскости. Отсюда $a_0=1,\,a_1=\alpha+k,\,a_2=\alpha k,\,b_0=0,\,b_1=1,$ следовательно,

$$I = \pi \frac{a_0 b_1 - a_2 b_0}{a_0 a_1 a_2} = \frac{\pi}{(\alpha + k) \alpha k}$$

и $D_{\Delta} = \frac{Ak}{\alpha + k} = 100 \,\mathrm{M}^2$. Очевидно также, что $\mathbf{M}\{\Delta(t)\} = 0$.

Итак, $m_S=\mathbf{M}\{x(t)-y(t)\}=0$, поэтому в силу некоррелированности процессов $\Delta x(t)$ и $\Delta(t)$ получаем

$${\sigma_S}^2 = \mathbf{D}\{x(t) - y(t)\} = \mathbf{D}\{\Delta x(t)\} + D_{\Delta} \approx 136 \,\mathrm{M}^2.$$

Таким образом, $\sigma_S \approx 11.7\,\mathrm{m}$ — средняя квадратическая погрешность работы следящей системы.

9.4. Задачи для самостоятельного решения.

1. Показать, что ССФ $\{\xi(t), t \in \mathbb{R}^1\}$ с.к.-непрерывна, если непрерывна ее ковариационная функция $R_{\xi}(t)$.

2. Найти
$$m_{\xi}(t),\,R_{\xi}(t),\,f_{\xi}(\lambda),\,$$
если $\xi(t)$ — телеграфный сигнал. Ответ. $m_{\xi}(t)=0,\,R_{\xi}(t)=e^{-2\lambda_0\,|t|},\,f_{\xi}(\lambda)=\frac{2\lambda_0}{\pi(4\lambda_0^2+\lambda^2)}.$

3. Для процесса $\zeta(t)$, введенного в определении 9.4, показать стационарность и вывести соотношение (9.17) для ковариационной функции.

Указание. Воспользоваться свойствами стохастического интеграла.

4. Доказать, что если выполнено условие (9.21), то правая часть выражения (9.22) сходится в среднеквадратическом смысле при $h \to 0$ к правой части соотношения (9.23).

5. Пусть $\xi(t)$ — центрированный стационарный процесс, а α — некоторое действительное число. Показать, что процесс $\zeta(t) = e^{i\alpha t} \xi(t)$ также является стационарным. Является ли стационарным процесс $\xi(t)\cos\alpha t$?

Ответ. Является только при $\alpha = 0$.

6. Пусть
$$\xi(t) = \sum_{k=1}^{N} \xi_k(t)$$
 — сумма ССФ $\xi_k(t)$, допускающих спектраль-

ное представление со стохастическими мерами $Z_k(d\lambda)$. Показать, что для процесса $\xi(t)$ также имеет место спектральное представление с некоторой стохастической мерой $Z(d\lambda)$. Если процессы $\xi_k(t)$ являются попарно некоррелированными, показать, что спектральное распределение процесса $\xi(t)$ равно сумме спектральных распределений ССФ $\xi_k(t)$. Привести пример, показывающий, что для коррелированных процессов это утверждение неверно.

7. ССФ
$$\xi(t)$$
 имеет спектральное представление $\xi(t)=\int\limits_{-\infty}^{\infty}e^{i\lambda t}\,Z_{\xi}(d\lambda).$ Пусть также $\zeta(t)=\int\limits_{-\infty}^{\infty}e^{ig(\lambda)t}\Phi(\lambda)\,Z_{\xi}(d\lambda),$ где $g(\lambda)$ — некоторая действитель-

Пусть также
$$\zeta(t)=\int\limits_{-\infty}^{\infty}e^{ig(\lambda)t}\Phi(\lambda)\,Z_{\xi}(d\lambda),$$
 где $g(\lambda)$ — некоторая действитель-

ная функция, а $\Phi(\lambda)$ удовлетворяет условию (9.12). Найти ковариационную функцию процесса $\zeta(t)$. Будет ли он стационарным?

Ответ.
$$R_\zeta(t)=\int\limits_{-\infty}^\infty e^{ig(\lambda)t}|\Phi(\lambda)|^2\,dF_\xi(\lambda)$$
, где $F_\xi(\lambda)$ — спектральная функция ССФ $\xi(t)$.

8. Частотная характеристика $\Phi(\lambda)$ линейного преобразования имеет вид

$$\Phi(\lambda) = \left\{ \begin{array}{ll} 1, & \text{если} \quad a < |\lambda| \leqslant b, \\ 0 & \text{в противном случае,} \end{array} \right.$$

где b>a>0. Найти весовую функцию h(t) этого преобразования и дисперсию выходного сигнала $\xi(t)$, если на вход поступает белый шум v(t)

Ответ.
$$h(t) = \frac{\sin bt - \sin at}{\pi t}$$
, $D_{\xi} = \sigma^2 \frac{b-a}{\pi}$.

с ковариацией $R_v(t) = \sigma^2 \delta(t)$. Ответ. $h(t) = \frac{\sin bt - \sin at}{\pi t}$, $D_\xi = \sigma^2 \frac{b-a}{\pi}$. 9. Показать, что функция, C(t), такая, что $C(t) = 1 - |t|/t_0$ при $|t| \leqslant t_0$ и C(t) = 0 при $|t| > t_0$, является ковариационной функцией некоторого стационарного процесса. Найти его спектральную плотность. О т в е т. $f_\xi(\lambda)=\frac{1-\cos\lambda t_0}{\pi\lambda^2 t_0}.$

Otbet.
$$f_{\xi}(\lambda) = \frac{1-\cos\lambda t_0}{\pi\lambda^2 t_0}$$
.

10. Определить, являются ли следующие функции ковариационными функциями некоторых стационарных процессов, и, если являются, найти их спектральные плотности:

1)
$$C(t) = \sigma^2 \exp\{-\alpha |t|\} \cos \beta t$$
, $\alpha > 0$;

2)
$$C(t) = \sigma^2 \exp\{-\alpha |t|\} (1 + \alpha |t|), \quad \alpha > 0;$$

СПЕКТРАЛЬНЫЕ ПЛОТНОСТИ:
1)
$$C(t) = \sigma^2 \exp\{-\alpha |t|\} \cos \beta t$$
, $\alpha > 0$;
2) $C(t) = \sigma^2 \exp\{-\alpha |t|\} (1 + \alpha |t|)$, $\alpha > 0$;
3) $C(t) = \sigma^2 \exp\{-\alpha |t|\} \left(1 + \alpha |t| + \frac{(\alpha t)^2}{3}\right)$, $\alpha > 0$;

4)
$$C(t) = \sigma^2 \exp\{-\alpha |t|\} (\cos \beta t - \frac{\alpha}{\beta} \sin \beta |t|), \quad \alpha > 0;$$

4)
$$C(t) = \sigma^2 \exp\{-\alpha |t|\} (\cos \beta t - \frac{\alpha}{\beta} \sin \beta |t|), \quad \alpha > 0;$$

5) $C(t) = \sigma^2 \exp\{-\alpha |t|\} (\cos \beta t + \frac{\alpha}{\beta} \sin \beta |t|), \quad \alpha > 0;$
6) $C(t) = \sigma^2 \exp\{-\alpha |t|\} (\cosh \beta t + \frac{\alpha}{\beta} \sinh \beta |t|), \quad \alpha \geqslant \beta.$

6)
$$C(t) = \sigma^2 \exp\{-\alpha |t|\} \left(\cosh \beta t + \frac{\alpha}{\beta} \sinh \beta |t| \right), \quad \alpha \geqslant \beta.$$

Указание. Найти преобразование Фурье функций C(t). Поскольку преобразования Фурье для всех функций являются неотрицательными и интегрируемыми функциями, то по теореме 9.1 они являются ковариационными функциями некоторых стационарных случайных процессов.

1)
$$f_{\xi}(\lambda) = \frac{\sigma^2 \alpha}{2\pi} \left[\frac{1}{\alpha^2 + (\beta + \lambda)^2} + \frac{1}{\alpha^2 + (\beta - \lambda)^2} \right];$$

2)
$$f_{\xi}(\lambda) = \frac{\sigma^2 \alpha}{\pi} \cdot \frac{2\alpha^2}{(\alpha^2 + \lambda^2)^2};$$

3)
$$f_{\xi}(\lambda) = \frac{\sigma^2 \alpha}{\pi} \cdot \frac{8\alpha^4}{3(\alpha^2 + \lambda^2)^3};$$

4)
$$f_{\xi}(\lambda) = \frac{\sigma^2 \alpha}{\pi} \cdot \frac{2\lambda^2}{(\lambda^2 + \alpha^2 + \beta^2)^2 - 4\beta^2 \lambda^2}$$

5)
$$f_{\xi}(\lambda) = \frac{\sigma^2 \alpha}{\pi} \cdot \frac{2(\alpha^2 + \beta^2)}{(\lambda^2 + \alpha^2 - \beta^2)^2 + 4\alpha^2 \beta^2}$$

$$2\pi \left[\alpha^{2} + (\beta + \lambda)^{2} - \alpha^{2} + (\beta - \lambda)^{2} \right]$$

$$2) f_{\xi}(\lambda) = \frac{\sigma^{2}\alpha}{\pi} \cdot \frac{2\alpha^{2}}{(\alpha^{2} + \lambda^{2})^{2}};$$

$$3) f_{\xi}(\lambda) = \frac{\sigma^{2}\alpha}{\pi} \cdot \frac{8\alpha^{4}}{3(\alpha^{2} + \lambda^{2})^{3}};$$

$$4) f_{\xi}(\lambda) = \frac{\sigma^{2}\alpha}{\pi} \cdot \frac{2\lambda^{2}}{(\lambda^{2} + \alpha^{2} + \beta^{2})^{2} - 4\beta^{2}\lambda^{2}};$$

$$5) f_{\xi}(\lambda) = \frac{\sigma^{2}\alpha}{\pi} \cdot \frac{2(\alpha^{2} + \beta^{2})}{(\lambda^{2} + \alpha^{2} - \beta^{2})^{2} + 4\alpha^{2}\beta^{2}};$$

$$6) f_{\xi}(\lambda) = \frac{\sigma^{2}\alpha}{\pi} \cdot \frac{2(\alpha^{2} - \beta^{2})}{[(\alpha - \beta)^{2} + \lambda^{2}][(\alpha + \beta)^{2} + \lambda^{2}]}.$$

11. Является ли с.к.-дифференцируемой $CC\Phi$ $\xi(t)$ со спектральной плотностью:

THOCTHO:
$$1) f(\lambda) = \frac{\alpha}{\lambda^2 + \beta^2};$$

$$2) f(\lambda) = \left| \frac{\lambda^2 + \beta^2}{\alpha^2 + (\lambda - \beta)^2} - \frac{1}{\alpha^2 + (\lambda + \beta)^2} \right|,$$
 где $\alpha > 0, \beta > 0.$

Ответ. 1) нет; 2) нет.

12. Пусть ковариационная функция стационарного процесса $\xi(t)$ бесконечное число раз дифференцируема. Показать, что тогда:

1)
$$\int_{-\infty}^{\infty} \lambda^{2n} dF_{\xi}(\lambda) < \infty \quad \forall n > 0;$$

2)
$$\xi(t+\tau) = \sum_{k=0}^{\infty} \frac{\tau^k}{k!} \xi^{(k)}(t)$$
.

Указание. Использовать (9.21) и показать п. 1. Далее, используя спектральное представление процесса $\xi(t)=\int\limits_{-\infty}^{\infty}e^{i\lambda t}\,Z_{\xi}(d\lambda)$, показать, что $\xi^{(k)}(t)=\int\limits_{-\infty}^{\infty}(i\lambda)^ke^{i\lambda t}\,Z_{\xi}(d\lambda)$. Затем записать спектральное разложение для процесса $\xi(t+ au)$ и воспользоваться разложением $e^{i\lambda au}$ в ряд Тейлора.

§ 10. Случайные функции с ортогональными и независимыми приращениями

10.1. Основные понятия и определения. Предположим, что $\{\xi(t),\,t\geqslant 0\}$ — некоторая вещественная гильбертова случайная функция, т. е. $\mathbf{M}\{\xi(t)^2\}<\infty$ для всех $t\geqslant 0$.

О пределение 10.1. Приращением СФ $\xi(t)$ на промежутке (t,s], где $0\leqslant t\leqslant s,$ называется случайная величина

$$\Delta \xi(t,s) = \xi(s) - \xi(t). \tag{10.1}$$

Определение 10.2. СФ $\xi(t)$ называется процессом с ортогональными приращениями, если для произвольных моментов времени $0\leqslant t_1\leqslant t_2\leqslant t_3\leqslant t_4$ выполняется соотношение

$$\mathbf{cov}\{\Delta\xi(t_1, t_2), \Delta\xi(t_3, t_4)\} = 0. \tag{10.2}$$

Известно (см. п. 14.7), что ковариация двух случайных величин имеет смысл скалярного произведения. Поэтому условие некоррелированности приращений (10.2) обычно называют условием их *ортогональности*, т.е. равенства нулю скалярного произведения этих приращений. Заметим также, что из (10.2) в общем случае не следует независимость соответствующих приращений.

Замечание. Из (10.1), (10.2) следует, что СФ $\tilde{\xi}(t) = \xi(t) - \xi(0)$ также является процессом с ортогональными приращениями. Действительно, для любого промежутка (t,s] $\Delta \tilde{\xi}(t,s) = \Delta \xi(t,s)$, т. е. все свойства приращений процесса $\xi(t)$ автоматически переносятся на приращения процесса $\tilde{\xi}(t)$. Поэтому без потери общности изложения далее предполагается, что $\xi(0) = 0$. В этом случае говорят, что процесс $\xi(t)$ выходит из нуля.

Оказывается, что условие ортогональности приращений процесса $\xi(t)$ означает, что ковариационная функция $R_{\xi}(t,s)$ имеет некоторую специальную структуру. Изучим строение функции $R_{\xi}(t,s)$ при условии, что $\xi(t)$ — центрированный вещественный процесс с ортогональными приращениями и дисперсией

$$D_{\xi}(t) = \mathbf{M}\{\xi(t)^{2}\}, \quad t \geqslant 0.$$
 (10.3)

Предположим также, что $\xi(t)$ является с.к.-непрерывным. В этом случае $D_{\xi}(t)$ — непрерывная функция (см. п. 8.1).

Пример 10.1. Доказать, что функция $D_{\xi}(t)$ является монотонно неубывающей.

Pешение. Пусть $s\geqslant 0$. Тогда для любого $t\geqslant 0$ с учетом $\xi(0)=0$

$$\begin{split} D_{\xi}(t+s) &= \mathbf{D}\{\xi(t+s)\} = \mathbf{D}\{(\xi(t+s) - \xi(t)) + (\xi(t) - \xi(0))\} = \\ &= \mathbf{D}\{\Delta\xi(t,t+s) + \Delta\xi(0,t)\} = \mathbf{D}\{\Delta\xi(0,t)\} + \\ &+ 2\operatorname{\mathbf{cov}}\{\Delta\xi(0,t), \Delta\xi(t,t+s)\} + \mathbf{D}\{\Delta\xi(t,t+s)\}. \end{split}$$

Учитывая, что приращения $\Delta \xi(0,t)$ и $\Delta \xi(t,t+s)$ ортогональны, и то, что $\Delta \xi(0,t)=\xi(t)$, получаем

$$D_{\varepsilon}(t+s) = \mathbf{D}\{\xi(t)\} + \mathbf{D}\{\Delta\xi(t,t+s)\} \geqslant \mathbf{D}\{\xi(t)\} = D_{\varepsilon}(t),$$

что и требовалось доказать.

Рассмотрим ковариационную функцию $R_{\xi}(t,\tau) = \mathbf{cov}\{\xi(t),\xi(\tau)\}$ СФ $\xi(t)$. Известно, что $D_{\xi}(t) = R_{\xi}(t,t)$ для всех $t \geqslant 0$. Следующий пример показывает, что для процессов с ортогональными приращениями имеет место и обратное утверждение, а именно: ковариационная функция $R_{\xi}(t,\tau)$ может быть выражена через дисперсию $D_{\xi}(t)$ (в общем случае это не так!).

Пример 10.2. Доказать, что для произвольного процесса с ортогональными приращениями $\xi(t)$ и любых $t,s\geqslant 0$ справедливо соотношение

$$R_{\xi}(t,s) = D_{\xi}(\min(t,s)). \tag{10.4}$$

Решение. По-прежнему будем считать, что $m_\xi(t)\equiv 0$ и $\xi(0)=0$. Если $t\leqslant s$, то

$$R_{\xi}(t,s) = \mathbf{cov}\{\xi(t),\xi(s)\} = \mathbf{cov}\{\xi(t),\xi(s) - \xi(t) + \xi(t)\} =$$

$$= \mathbf{cov}\{\xi(t),\xi(t)\} + \mathbf{cov}\{\Delta\xi(0,t),\Delta\xi(t,s)\} = \mathbf{cov}\{\xi(t),\xi(t)\} = D_{\xi}(t).$$

Если же t>s, то аналогично находим $R_{\xi}(t,s)=D_{\xi}(s)$. Полученные результаты можно записать одной формулой:

$$R_{\mathcal{E}}(t,s) = D_{\mathcal{E}}(\min(t,s)).$$

Из (10.2)–(10.4) следует, что при $s\geqslant t$ приращение $\Delta\xi(t,s)$ является центрированной случайной величиной с дисперсией

$$\mathbf{D}\{\Delta\xi(t,s)\} = D_{\xi}(s) - D_{\xi}(t).$$

Последнюю формулу для произвольных $t, s \geqslant 0$ можно представить в несколько более общем виде:

$$\mathbf{D}\{\xi(t) - \xi(s)\} = D_{\xi}(\max(t, s)) - D_{\xi}(\min(t, s)). \tag{10.5}$$

Замечание. Поскольку для с.к.-непрерывности центрированного процесса $\xi(t)$ в точке t_0 необходимо и достаточно, чтобы ковариационная функция $R_{\xi}(t_1,t_2)$ была непрерывна в точке (t_0,t_0) , то с.к.-непрерывность произвольного процесса с ортогональными приращениями равносильна непрерывности функции $D_{\xi}(t)$.

Весьма важным частным случаем процессов с ортогональными приращениями являются процессы с независимыми приращениями.

Определение 10.3. Случайная функция $\{\xi(t), t \geq 0\}$ называется процессом с независимыми приращениями, если для любых моментов $0 \leq t_1 \leq t_2 \leq \ldots \leq t_n, n \geq 1$ случайные величины

$$\xi(0), \Delta \xi(0, t_1), \Delta \xi(t_1, t_2), \ldots, \Delta \xi(t_{n-1}, t_n)$$

независимы в совокупности.

Замечания. 1) Очевидно, что в случае $\mathbf{M}\big\{\xi^2(t)\big\}<\infty$ при всех $t\geqslant 0$ процесс с независимыми приращениями является также процессом с ортогональными приращениями. Обратное утверждение в общем случае несправедливо, однако всякий гауссовский процесс с ортогональными приращениями также является и процессом с независимыми приращениями (в предположении, что $\xi(0)=0$). Действительно, для гауссовского процесса $\xi(t)$ величины

$$\Delta \xi(0,t_1), \Delta \xi(t_1,t_2), \ldots, \Delta \xi(t_{n-1},t_n)$$

образуют гауссовский случайный вектор с некоррелированными компонентами и, следовательно, эти величины независимы в совокупности (см. п. 14.6).

2) Можно доказать, что всякий процесс с независимыми приращениями является *марковским процессом*. Однако для процессов с некоррелированными приращениями в общем случае это утверждение несправедливо.

Следующий пример показывает важность понятия процесса с ортогональными приращениями для стохастического анализа вообще и теории стационарных процессов — в частности.

 Π р и м е р 10.3. Показать, что с помощью центрированного с.к.-непрерывного процесса $\xi(t)$ с ортогональными приращениями, заданного на $[0,T]\subseteq\mathbb{R}^1,\ \xi(0)=0$, можно задать ортогональную стохастическую меру на борелевской σ -алгебре подмножеств [0,T].

Решение. Пусть \mathcal{E}_0 — алгебра, порожденная промежутками $\Delta = \langle s,t \rangle$ отрезка [0,T] (см. п. 13.3). Покажем, что функция $\Xi^0(\cdot)$, определенная по правилу

$$\Xi^{0}(\Delta) = \Delta \xi(t, s) = \xi(s) - \xi(t), \quad \Delta = \langle s, t \rangle, \qquad (10.6)$$

обладает всеми свойствами элементарной ортогональной стохастической меры на \mathcal{E}_0 (см. п. 14.8).

Действительно,

$$\begin{split} \mathbf{M} \big\{ \Xi^0(\Delta) \big\} &= \mathbf{M} \{ \Delta \xi(t,s) \} = 0, \\ \mathbf{M} \big\{ \Xi^0(\Delta)^2 \big\} &= \mathbf{D} \{ \Delta \xi(t,s) \} = D_\xi(s) - D_\xi(t) < \infty. \end{split}$$

Если
$$\Delta_1 = \langle t, \tau \rangle$$
, $\Delta_2 = \langle \tau, s \rangle$, $\Delta_1 \cap \Delta_2 = \emptyset$ и $\Delta_1 \cup \Delta_2 = \langle t, s \rangle$, то

$$\Xi^{0}(\Delta_{1} \cup \Delta_{2}) = \xi(s) - \xi(t) = \Delta \xi(t, \tau) + \Delta \xi(\tau, s) = \Xi^{0}(\Delta_{1}) + \Xi^{0}(\Delta_{2}).$$

Наконец, $\Xi^0(\cdot)$ обладает свойством ортогональности:

$$\mathbf{M}\left\{\Xi^{0}(\Delta_{1})\Xi^{0}(\Delta_{2})\right\} = \mathbf{cov}\left\{\Delta\xi(t_{1},s_{1}),\Delta\xi(t_{2},s_{2})\right\} = 0$$

для любых $\Delta_1 = \langle t_1, s_1 \rangle$, $\Delta_2 = \langle t_2, s_2 \rangle$, таких, что $\Delta_1 \cap \Delta_2 = \varnothing$. В силу того, что любое множество $A \in \mathcal{E}_0$ можно представить в виде $A = \bigcup_{k=0}^{n} \Delta_k$, где $n < \infty$, а $\{\Delta_k\}$ — непересекающиеся промежутки,

рассмотренные свойства функции $\Xi^0(\cdot)$ справедливы для любых множеств из \mathcal{E}_0 , если положить $\Xi^0(A) = \sum_{k=1}^n \Xi^0(\Delta_k)$.

Пусть функция $m_{\mathcal{E}}^0(\cdot)$ определена на промежутках соотношением

$$m_{\xi}^{0}(\Delta) = \mathbf{M}\left\{\Xi^{0}(\Delta)^{2}\right\} = D_{\xi}(s) - D_{\xi}(t), \quad \Delta = \langle t, s \rangle.$$
 (10.7)

Дисперсия $D_{\xi}(t)$ монотонно не убывает (см. пример 10.1), является непрерывной (в силу с.к.-непрерывности $\xi(t)$), а также $D_{\xi}(0)=0$, так как $\xi(0)=0$. Следовательно, $D_{\xi}(t)$ — функция распределения (см. определение 13.9), а $m_{\xi}^{0}(\cdot)$ — порожденная ею мера.

Пусть $\{A_n\}$ — такая последовательность множеств из \mathcal{E}_0 , что $A_n \downarrow \varnothing$ при $n \to \infty$ (см. п. 14.8), тогда

$$\mathbf{M}ig\{\Xi^0(A_n)^2ig\} = m_{\xi}^0(A_n) o 0$$
 при $n o \infty$

в силу непрерывности «в нуле» меры $m_{\xi}^0(\cdot)$. Итак, $\Xi^0(\cdot)$ — элементарная ортогональная стохастическая мера на \mathcal{E}_0 , а $m_{\xi}^0(\cdot)$ — ее структурная функция.

Теперь $\Xi^0(\cdot)$ может быть продолжена до ортогональной стохастической меры $\Xi(\cdot)$ (см. п. 14.8), определенной на борелевской σ -алгебре $\mathcal{B}([0,T])$, которая является минимальной σ -алгеброй, содержащей \mathcal{E}_0 , т. е. $\mathcal{B}([0,T]) = \sigma(\mathcal{E}_0)$ (см. п. 13.3).

В дальнейшем стохастический интеграл по мере $\Xi(\cdot)$, порожденной случайной функцией $\xi(t)$ с ортогональными приращениями, будем записывать следующим образом:

$$I(\varphi) = \int_{0}^{T} \varphi(t) \,\Xi(dt) = \int_{0}^{T} \varphi(t) \,d\xi(t), \tag{10.8}$$

где $\varphi(t), t \in [0, T],$ — неслучайная функция, такая, что

$$\int_{0}^{T} |\varphi(t)|^2 dD_{\xi}(t) < \infty. \tag{10.9}$$

Из общих свойств интеграла по стохастической мере (см. п. 14.9) с учетом (10.7) получаем

$$\mathbf{M}\{I(\varphi)\} = \mathbf{M}\left\{\int_{0}^{T} \varphi(t) \, d\xi(t)\right\} = 0, \tag{10.10}$$

$$\mathbf{D}\{I(\varphi)\} = \mathbf{M}\left\{ \left| \int_{0}^{T} \varphi(t) \, d\xi(t) \right|^{2} \right\} = \int_{0}^{T} |\varphi(t)|^{2} \, dD_{\xi}(t). \tag{10.11}$$

Наконец, если $I(\psi)=\int\limits_0^T\psi(t)\,d\xi(t)$, где $\psi(t),\,t\in[0,T],$ — неслучайная функция, также удовлетворяющая условию (10.9), то

$$\mathbf{cov}\{I(\varphi),I(\psi)\} = \int_{0}^{T} \varphi(t)\overline{\psi(t)} dD_{\xi}(t).$$

Если определить процесс $\eta(t)$ как интеграл с переменным верхним пределом:

$$\eta(t) = \int_{0}^{t} \varphi(\tau) d\xi(\tau), \quad t \leqslant T,$$

то нетрудно проверить, что $\eta(t)$ имеет ортогональные приращения, откуда

$$R_{\eta}(t,s) = \mathbf{cov}\{\eta(t),\eta(s)\} = \int\limits_{0}^{\min(t,s)} |\varphi(\tau)|^2 dD_{\xi}(\tau) = D_{\eta}(\min(t,s)).$$

Можно показать, что в рассматриваемом случае справедлив аналог формулы (8.11) интегрирования по частям для с.к.-интеграла:

$$\int_{0}^{T} \varphi(t) d\xi(t) = \varphi(T)\xi(T) - \int_{0}^{T} \dot{\varphi}(t)\xi(t) dt, \qquad (10.12)$$

где $\varphi(t)$ — функция, непрерывно дифференцируемая на отрезке [0,T]. Отметим, что левая часть равенства (10.12) содержит стохастический интеграл (от неслучайной функции), тогда как, в правой части присутствует интеграл в среднеквадратическом (от с.к.-непрерывной случайной функции).

10.2. Однородные процессы с ортогональными приращениями. Пусть $\{\xi(t),\ t\geqslant 0\}$ — выходящий из нуля вещественный процесс с ортогональными приращениями.

Определение 10.4. Процесс $\xi(t)$ называется однородным, если для любых $t, s \ge 0$ закон распределения приращения $\Delta \xi(t, t+s)$ зависит только от s, т. е. совпадает с законом распределения сечения $\xi(s)$.

Оказывается, что требование однородности позволяет получить явный вид функций $R_{\xi}(t,s)$ и $D_{\xi}(t)$.

 Π р и м е р 10.4. Показать, что произвольный с.к.-непрерывный невырожденный однородный процесс $\xi(t)$ с ортогональными приращениями имеет следующие характеристики:

$$D_{\mathcal{E}}(t) = \sigma^2 t, \quad \sigma > 0, \tag{10.13}$$

$$R_{\mathcal{E}}(t,s) = \sigma^2 \min(t,s), \tag{10.14}$$

$$\mathbf{D}\{\xi(s) - \xi(t)\} = \sigma^2 |t - s|. \tag{10.15}$$

Решение. Из примера 10.1 следует, что для любых $t,s\geqslant 0$ выполнено равенство

$$D_{\xi}(t+s) = D_{\xi}(t) + \mathbf{D}\{\Delta \xi(t, t+s)\}.$$

С учетом однородности процесса $\xi(t)$ и условия $\xi(0)=0$ имеем

$$\mathbf{D}\{\Delta\xi(t,t+s)\} = \mathbf{D}\{\Delta\xi(0,s)\} = \mathbf{D}\{\xi(s)\} = D_{\varepsilon}(s).$$

Итак, $D_{\xi}(t+s) = D_{\xi}(t) + D_{\xi}(s)$ для любых $t,s \geqslant 0$, причем в силу замечания после примера 10.2 функция $D_{\xi}(t)$ непрерывна. Полученное уравнение имеет единственное решение на классе непрерывных функций:

$$D_{\varepsilon}(t) = \sigma^2 t, \quad \sigma^2 \geqslant 0.$$

Если $\xi(t)$ — невырожденный процесс (т.е. $D_{\xi}(t) > 0$ для некоторого t > 0), то $\sigma^2 > 0$. Итак, равенство (10.13) доказано. Формулы (10.14) и (10.15) следуют непосредственно из общих соотношений (10.4), (10.5) с учетом (10.13). \blacksquare

Замечание. Константу σ^2 в (10.13) обычно называют интенсивностью процесса $\xi(t)$. Если же $\sigma^2=1$, то процесс $\xi(t)$ называется стандартным или процессом с единичной интенсивностью. Заметим также, что структурная функция $m_{\xi}(\Delta)$ стохастической меры $\Xi(\Delta)$, построенной по стандартному однородному процессу $\xi(t)$ (см. пример 10.3), совпадает с обычной мерой Лебега:

$$m_{\mathcal{E}}(dt) = dt, \tag{10.16}$$

что следует непосредственно из (10.7) и (10.13).

13 Б.М. Миллер и А.Р. Панков

Рассмотрим пример однородного процесса с независимыми приращениями, который имеет важное значение при решении прикладных задач, связанных с теорией надежности и теорией систем массового обслуживания (см. §12).

Определение 10.5. Однородный процесс $\{\eta(t), t \geqslant 0\}$ с независимыми приращениями называется nyaccohoeckum, если при каждом $t \geqslant 0$ сечение $\eta(t)$ имеет распределение Пуассона с параметром λt , где $\lambda > 0$:

$$\mathbf{P}\{\eta(t) = k\} = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \quad k = 0, 1, 2, \dots$$
 (10.17)

Из определения 10.5 и общих свойств процессов с ортогональными приращениями следует:

$$m_n(t) = \lambda t, \qquad D_n(t) = \lambda t, \quad t \geqslant 0;$$

$$\mathbf{P}\{\eta(s) - \eta(t) = k\} = \frac{(\lambda(s-t))^k}{k!} e^{-\lambda(s-t)}, \quad 0 \leqslant t \leqslant s, \quad k = 0, 1, 2, \dots;$$

$$\mathbf{D}\{\eta(s) - \eta(t)\} = \lambda |t - s| \quad t, s \geqslant 0.$$

Пуассоновский процесс имеет следующий физический смысл: при всяком t>0 величина $\eta(t)$ численно равна количеству событий из простейшего потока интенсивности λ (см. п. 12.1), произошедших к моменту t. Таким образом, реализации пуассоновского процесса имеют вид кусочно постоянных функций, изменяющихся скачком на единицу (вверх) в случайные моменты времени $\{\tau_1, \tau_2, \dots\}$, соответствующие появлениям очередных событий из потока. Поэтому $\eta(t)$ относится к классу считающих случайных процессов.

Пусть теперь на $T=[0,+\infty)$ задана детерминированная функция $\nu(t)>0$, которая предполагается интегрируемой по Лебегу на каждом конечном промежутке. Пусть также

$$a(t) = \int_{0}^{t} \nu(\tau) d\tau, \qquad (10.18)$$

а $\{\eta(t),\,t\geqslant 0\}$ — процесс с независимыми приращениями, такой, что для всех $0\leqslant t\leqslant s$ и $k=0,1,\ldots$ выполнено

$$\mathbf{P}\{\Delta \eta(t,s) = k\} = \frac{(a(s) - a(t))^k}{k!} e^{-(a(s) - a(t))}.$$

В этом случае $\eta(t)$ называют неоднородным пуассоновским процессом, а функцию $\nu(t)$ — интенсивностью. Из определения 10.5 немедленно следует, что однородный пуассоновский процесс имеет постоянную интенсивность $\nu(t) \equiv \lambda > 0$.

Из свойств распределения Пуассона следует, что

$$m_{\eta}(t) = D_{\eta}(t) = a(t), \quad R_{\eta}(t,\tau) = a(\min(t,\tau)).$$

Из определения (10.18) a(t) следует, что $D_{\eta}(t)$ непрерывна на T, поэтому $\eta(t)$ — с. к.-непрерывный процесс с ортогональными приращениями (см. пример 10.2).

Неоднородный пуассоновский процесс несложно преобразовать в однородный, о чем свидетельствует следующий пример.

Пример 10.5. Показать, что с помощью неслучайной замены времени неоднородный пуассоновский процесс можно преобразовать в однородный пуассоновский с интенсивностью $\lambda=1$.

Решение. В силу условия $\nu(\tau)>0$ заключаем, что a(t) — строго монотонно возрастающая функция, a(0)=0. Обозначим через b(t) функцию, обратную к a(t): $a(b(t))\equiv t$. Функция b(t) определена на полуинтервале $[0,a(+\infty))$ единственным образом. Введем процесс $\widetilde{\eta}(t)=\eta(b(t))$, тогда для $0\leqslant t< s< a(+\infty)$ имеем

$$\begin{aligned} \mathbf{P}\{\widetilde{\eta}(s) - \widetilde{\eta}(t) &= k\} = \mathbf{P}\{\eta(b(s)) - \eta(b(t)) = k\} = \\ &= \frac{[a(b(s)) - a(b(t))]^k}{k!} \exp\{-[a(b(s)) - a(b(t))]\} = \frac{(s-t)^k}{k!} e^{-(s-t)}. \end{aligned}$$

Таким образом, $\widetilde{\eta}(t)$ — однородный пуассоновский процесс единичной интенсивности в силу определения 10.5. Полученное преобразование времени позволяет сводить решение задач для неоднородного пуассоновского процесса к соответствующим решениям для однородного процесса. \blacksquare

В конце п. 10.1 был определен стохастический интеграл по центрированному процессу $\xi(t)$ с ортогональными приращениями ($\xi(0)=0$). Пусть $\mathring{\eta}(t)=\eta(t)-a(t)$, где $\eta(t)$ — неоднородный пуассоновский процесс интенсивности $\nu(t)$. Тогда можно показать, что для любой непрерывной на [0,T] функции $\varphi(t)$ выполнено

$$\int_{0}^{t} \varphi(\tau) \, d\mathring{\eta}(\tau) = \sum_{\tau_{k} \leqslant t} \varphi(\tau_{k}) - \int_{0}^{t} \varphi(\tau) \nu(\tau) \, d\tau, \quad t \geqslant 0, \tag{10.19}$$

где $\{\tau_k\}$ — случайные моменты скачков процесса $\eta(t)$. Стохастическая ортогональная мера, порожденная центрированным пуассоновским процессом $\stackrel{\circ}{\eta}(t)$, называется nyaccohosckoŭ мерой. Из (10.19) следует, что стохастический интеграл от неслучайной функции по пуассоновской мере можно вычислить аналитически.

В заключение выясним, может ли какой-нибудь процесс с некоррелированными приращениями быть дифференцируемым.

Пример 10.6. Показать, что невырожденный однородный процесс $\xi(t)$ с ортогональными приращениями не имеет с.к.-производной ни в одной точке $t\geqslant 0$.

Решение. Предположим, что с.к.-производная $v(t)=\dot{\xi}(t)$ существует. Тогда $R_v(t,\tau)=\mathbf{cov}\{v(t),v(\tau)\}=\frac{\partial^2 R_\xi(t,\tau)}{\partial t\partial \tau}$, причем последняя производная по теореме 8.3 должна быть конечной при $t=\tau$. Попытаемся вычислить $R_v(t,\tau)$ с учетом, что $R_\xi(t,\tau)=\sigma^2\min(t,\tau)$. Очевидно, что

$$\frac{\partial R_{\xi}(t,\tau)}{\partial t} = \sigma^2 \mathbb{I}(\tau - t), \quad \text{где} \quad \mathbb{I}(x) = \left\{ \begin{array}{ll} 1, & x \geqslant 0, \\ 0, & x < 0. \end{array} \right.$$

Тогда $R_v(t,\tau)=\frac{\partial}{\partial \tau}\left(\sigma^2\mathbb{I}(\tau-t)\right)=\sigma^2\delta(\tau-t)$, где $\sigma>0$, а $\delta(x)$ есть дельта-функция Дирака. Отсюда, $R_v(t,t)=\sigma^2\delta(0)=\infty$, т.е. $\xi(t)$ не имеет с.к.-производной в обычном смысле ни в одной точке $t\geqslant 0$.

Замечание. Результат, приведенный в примере 10.6, будучи негативным, имеет тем не менее важные последствия. Пусть процесс v(t) таков, что $m_v(t)=0$, а $R_v(t,\tau)=\sigma^2\delta(t-\tau)$. В силу того что $\delta(t-\tau)=0$ при $t\neq \tau$, можно заключить, что v(t) обладает тем свойством, что любые его сечения, сколь угодно близкие по времени, являются некоррелированными. Такой процесс уже встречался нам раньше — это белый шум. К сожалению, $D_v(t)=R_v(t,t)=\infty$ и, следовательно, такой процесс физически нереализуем. Однако результат примера 10.6 показывает, как белый шум появляется практически: это есть результат попытки продифференцировать некоторую случайную функцию с ортогональными приращениями. Наоборот, сам процесс с ортогональными приращениями можно формально трактовать как с.к.-интеграл от белого шума:

$$\xi(t) = \int_{0}^{t} v(\tau) d\tau.$$

Оказывается, что последнему выражению можно придать аккуратный математический смысл, что будет сделано в $\S 11$.

10.3. Мартингалы (непрерывное время). В § 7 рассматривались случайные последовательности, являющиеся мартингалами с дискретным временем. В данном пункте мы распространим это понятие на случайные функции и рассмотрим мартингалы с непрерывным временем, которые тесно связаны с процессами, имеющими ортогональные и независимые приращения.

Предположим, что на вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$ задано некоторое семейство σ -алгебр $\{\mathcal{F}_t\}, t \geqslant 0$.

Определение 10.6. Семейство $\{\mathcal{F}_t\}$ называется потоком σ -алгебр на $\{\Omega, \mathcal{F}, \mathbf{P}\}$, если $\mathcal{F}_t \subseteq \mathcal{F}$ при каждом $t \geqslant 0$, причем

а)
$$\mathcal{F}_t \subseteq \mathcal{F}_s$$
, если $0 \leqslant t < s$;

б) семейство $\{\mathcal{F}_t\}$ непрерывно справа, т. е.

$$\mathcal{F}_t = \mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_s, \quad t \geqslant 0.$$

Замечание. Если $\{\xi(t),t\geqslant 0\}$ — случайная функция, определенная на $\{\Omega,\mathcal{F},\mathbf{P}\}$, а $\mathcal{F}_t^\xi=\sigma\{\xi(u),\ 0\leqslant u\leqslant t\}$ — σ -алгебра, порожденная всевозможными конечными наборами сечений $\{\xi(t_k),\ t_k\in[0,t],\ k=1,\ldots,n\}$, то семейство $\{\mathcal{F}_t^\xi\}$ удовлетворяет требованию а) определения 10.6 по построению. Если же пополнить \mathcal{F}_0^ξ событиями нулевой вероятности \mathbf{P} и положить $\mathcal{F}_t=\mathcal{F}_{t+}^\xi$, то полученное семейство $\{\mathcal{F}_t\}$ будет удовлетворять также и условию б) и, следовательно, будет потоком σ -алгебр. Далее предполагается, что указанные действия выполнены, а под потоком $\{\mathcal{F}_t^\xi\}$ подразумевается «исправленный» вариант $\{\mathcal{F}_t\}$.

Определение 10.7. Если при каждом $t \geqslant 0$ случайная величина $\xi(t)$ измерима относительно \mathcal{F}_t , то случайная функция $\{\xi(t),\ t \geqslant 0\}$ называется согласованной с потоком σ -алгебр $\{\mathcal{F}_t\}$ (или \mathcal{F}_t -согласованной).

Пусть $\{\xi(t),\ t\geqslant 0\}$ согласована с потоком $\{\mathcal{F}_t\}$ и, кроме того, $\mathbf{M}\{|\xi(t)|\}<\infty.$

 $\overset{\sim}{\mathrm{O}}$ пределение 10.8. Случайная функция $\xi(t)$ называется:

а) мартингалом относительно $\{\mathcal{F}_t\}$, если

$$\mathbf{M}\{\xi(s) \mid \mathcal{F}_t\} = \xi(t)$$
 (Р-п.н.) при $s \geqslant t$;

б) субмартингалом относительно $\{\mathcal{F}_t\}$, если

$$\mathbf{M}\{\xi(s) \mid \mathcal{F}_t\} \geqslant \xi(t)$$
 (Р-п.н.) при $s \geqslant t$;

в) cyпермартингалом относительно $\{\mathcal{F}_t\}$, если $\{-\xi(t),\mathcal{F}_t\}$ — субмартингал.

Замечание. Если $\xi(t)$ является мартингалом относительно $\{\mathcal{F}_t^\xi\}$, то слова «относительно потока $\{\mathcal{F}_t^\xi\}$ » зачастую будут опускаться.

Приведем примеры мартингалов с непрерывным временем.

Пример 10.7. Пусть на $\{\Omega, \mathcal{F}, \mathbf{P}\}$ задан поток σ -алгебр $\{\mathcal{F}_t\}$ и случайная величина η , имеющая конечное математическое ожидание. Показать, что случайная функция $\xi(t) = \mathbf{M}\{\eta \mid \mathcal{F}_t\}, \ t \geqslant 0$, является мартингалом относительно $\{\mathcal{F}_t\}$.

Решение. По условию $\mathbf{M}\{|\eta|\}<\infty$, поэтому для любого $t\geqslant 0$ определено условное математическое ожидание $\xi(t)=\mathbf{M}\{\eta\mid \mathcal{F}_t\}$, причем $\xi(t)$ измерима относительно \mathcal{F}_t . Таким образом, случайная функция $\xi(t)$ \mathcal{F}_t -согласована. Далее, используя свойства условного математического ожидания и неравенство Иенсена (см. п. 14.5), получаем

$$\mathbf{M}\{|\xi(t)|\} = \mathbf{M}\{|\mathbf{M}\{\eta \mid \mathcal{F}_t\}|\} \leqslant \mathbf{M}\{\mathbf{M}\{|\eta| \mid \mathcal{F}_t\}\} \leqslant \mathbf{M}\{|\eta|\} < \infty.$$

Теперь осталось проверить условие а) определения 10.8. Пусть $0 \leqslant t \leqslant s$, тогда с учетом $\mathcal{F}_t \subseteq \mathcal{F}_s$ имеем

$$\mathbf{M}\{\xi(s) \mid \mathcal{F}_t\} = \mathbf{M}\{\mathbf{M}\{\eta \mid \mathcal{F}_s\} \mid \mathcal{F}_t\} = \mathbf{M}\{\eta \mid \mathcal{F}_t\} = \xi(t).$$

Итак, $\xi(t)$ — мартингал относительно $\{\mathcal{F}_t\}$ в силу определения. \blacksquare

Пример 10.8. Пусть $\{\xi(t), t \geq 0\}$ — мартингал относительно $\{\mathcal{F}_t\}$, а g(x) — выпуклая вниз функция, причем $\mathbf{M}\{|g(\xi(t))|\} < \infty$. Показать, что $\nu(t) = g(\xi(t)), t \geq 0$, является субмартингалом относительно $\{\mathcal{F}_t\}$.

Решение. Результат следует непосредственно из неравенства Иенсена (при $t \leq s$):

$$\mathbf{M}\{\nu(s) \mid \mathcal{F}_t\} = \mathbf{M}\{g(\xi(s)) \mid \mathcal{F}_t\} \geqslant g(\mathbf{M}\{\xi(s) \mid \mathcal{F}_t\}) = g(\xi(t)) = \nu(t).$$

В частности, если $\xi(t)$ — мартингал, то случайные функции $|\xi(t)|$, $|\xi(t)|^p$ (p>1), $\xi^+(t)$, где $x^+=\max(x,0)$, будут субмартингалами при условии, что они имеют конечные математические ожидания.

Свойства мартингалов и субмартингалов. Ниже предполагается, что $\{\xi(t), t \geq 0\}$ является мартингалом или субмартингалом относительно фиксированного потока σ -алгебр $\{\mathcal{F}_t\}$.

1) Функция $\xi(t)$ является мартингалом, если для $s>t\geqslant 0$

$$\int_{A} \xi(s,\omega) \mathbf{P}(d\omega) = \int_{A} \xi(t,\omega) \mathbf{P}(d\omega), \qquad (10.20)$$

и субмартингалом, если

$$\int_{A} \xi(s,\omega) \mathbf{P}(d\omega) \geqslant \int_{A} \xi(t,\omega) \mathbf{P}(d\omega)$$
 (10.21)

для любого события $A \in \mathcal{F}_t$.

- 2) Если $\xi(t)$ мартингал, то $\mathbf{M}\{\xi(t)\}\equiv \mathrm{const}$, а если $\xi(t)$ субмартингал (супермартингал), то $\mathbf{M}\{\xi(t)\}$ неубывающая (невозрастающая) функция.
- 3) Если $\xi(t)$ субмартингал, то для того чтобы $\xi(t)$ был мартингалом, необходимо и достаточно, чтобы $\mathbf{M}\{\xi(t)\}\equiv \mathrm{const.}$
- 4) Неравенство Колмогорова для мартингалов. Если $\{\xi(t), t \geqslant 0\}$ образует мартингал с непрерывными справа траекториями, $\mathbf{M}\{\xi(t)\}=m_{\xi},\ g(x)$ неотрицательная выпуклая функция, а $\Delta\subseteq[0,+\infty)$, то для любого $\varepsilon>0$

$$\mathbf{P} \big\{ \sup_{t \in \Delta} g(\xi(t)) \geqslant \varepsilon \big\} \leqslant \sup_{t \in \Delta} \mathbf{M} \big\{ g(\xi(t)) \big\} \, / \varepsilon.$$

В частности, справедлив усиленный вариант неравенства Чебышева:

$$\mathbf{P} \big\{ \sup_{t \in \Delta} |\xi(t) - m_{\xi}| \geqslant \varepsilon \big\} \leqslant \sup_{t \in \Delta} \mathbf{D} \big\{ \xi(t) \big\} / \varepsilon^2.$$

Если $\xi(t)$ — неотрицательный субмартингал, траектории которого непрерывны справа, а $\Delta \subseteq [0, +\infty)$, то для любого $\varepsilon > 0$

$$\mathbf{P} \Big\{ \sup_{t \in \Delta} \xi(t) \geqslant \varepsilon \Big\} \leqslant \sup_{t \in \Delta} \mathbf{M} \big\{ \xi(t) \big\} / \varepsilon.$$

5) Пусть $\{\xi(t), t \ge 0\}$ — субмартингал, траектории которого непрерывны справа, и $\sup \mathbf{M}\{|\xi(t)|\} < \infty$. Тогда с вероятностью 1 существу-

ет предел $\eta = \lim_{t \to \infty} \xi(t)$, причем $\mathbf{M}\{|\eta|\} < \infty$. Замечание. Из последнего свойства следует, в частности, что всякий непрерывный неотрицательный супермартингал $\{\xi(t), t \geqslant 0\}$ (его математическое ожидание равномерно ограничено) в некотором смысле вырождается. Действительно, почти каждая траектория этого процесса при $t \to \infty$ сходится к некоторому конечному пределу (в общем случае пределы различны для различных траекторий). Аналогичное свойство имеет место также и для неположительного субмартингала.

Следующий пример поясняет связь мартингалов и процессов с независимыми приращениями.

Пример 10.9. Пусть $\{\xi(t),\ t\geqslant 0\}$ — случайная функция с независимыми приращениями и постоянным математическим ожиданием. Показать, что $\xi(t)$ является мартингалом относительно потока $\{\mathcal{F}_t^\xi\}$, если $\xi(0)=0$.

Решение. Пусть $\Delta \xi(t,s)=\xi(s)-\xi(t)$ для $0\leqslant t < s$. Покажем, что $\Delta \xi(t,s)$ не зависит от σ -алгебры \mathcal{F}_t^ξ . Для этого достаточно доказать независимость указанного приращения от произвольного набора сечений

$$\xi(t_1), \dots, \xi(t_n), \tag{10.22}$$

где $0 = t_0 \leqslant t_1 < \ldots < t_n \leqslant t$. Поскольку сечения (10.22) можно представить в виде линейного преобразования приращений

$$\Delta \xi(t_0, t_1), \dots, \Delta \xi(t_{n-1}, t_n), \tag{10.23}$$

то требуемое утверждение следует из того, что приращения (10.23) не зависят от $\Delta \xi(t,s)$ по условию.

Теперь в силу независимости $\Delta \xi(t,s)$ от \mathcal{F}_t^{ξ} и постоянства $\mathbf{M}\{\xi(s)\}$ находим

$$\begin{split} \mathbf{M} \big\{ \xi(s) \mid \mathcal{F}_t^{\xi} \big\} &= \mathbf{M} \big\{ \xi(t) + \Delta \xi(t,s) \mid \mathcal{F}_t^{\xi} \big\} = \\ &= \mathbf{M} \big\{ \xi(t) \mid \mathcal{F}_t^{\xi} \big\} + \mathbf{M} \big\{ \Delta \xi(t,s) \mid \mathcal{F}_t^{\xi} \big\} = \xi(t) + \mathbf{M} \big\{ \Delta \xi(t,s) \big\} = \\ &= \xi(t) + \mathbf{M} \big\{ \xi(s) \big\} - \mathbf{M} \big\{ \xi(t) \big\} = \xi(t), \end{split}$$

где $\xi(t) = \mathbf{M}\{\xi(t) \mid \mathcal{F}_t^{\xi}\}$, так как $\xi(t)$ измерима относительно \mathcal{F}_t^{ξ} (см. свойства условного математического ожидания в п. 14.5). Учитывая, что $\mathbf{M}\{|\xi(t)|\}<\infty$ по условию, получаем, что $\xi(t)$ — мартингал.

Введенный в предыдущем пункте пуассоновский процесс дает нам содержательный пример субмартингала.

Пример 10.10. Показать, что однородный пуассоновский процесс $\eta(t)$ является субмартингалом относительно $\{\mathcal{F}_t^\eta\}$ и допускает представление вида

$$\eta(t) = \gamma(t) + A(t), \tag{10.24}$$

где $\gamma(t)$ — мартингал относительно $\{\mathcal{F}_t^{\eta}\}$, а A(t) — детерминированная функция.

Решение. Согласно определению 10.5 приращение $\eta(s) - \eta(t)$, s > t, неотрицательно, причем $\mathbf{M}\{|\eta(t)|\} < \infty$. Следовательно,

$$\mathbf{M}\{\eta(s) \mid \mathcal{F}_t^{\eta}\} - \eta(t) = \mathbf{M}\{\eta(s) - \eta(t) \mid \mathcal{F}_t^{\eta}\} \geqslant 0,$$

что доказывает субмартингальность процесса $\eta(t)$.

Поскольку $\mathbf{M}\{\eta(t)\} = \lambda t$, то процесс $\gamma(t) = \eta(t) - \lambda t$ является центрированной СФ с независимыми приращениями, причем $\gamma(0) = 0$. Поэтому в силу результата примера 10.9 $\gamma(t)$ представляет собой мартингал относительно $\{\mathcal{F}_t^{\gamma}\}$. Так как $\mathcal{F}_t^{\gamma} = \mathcal{F}_t^{\eta}$ при любом $t \geqslant 0$, то $\gamma(t)$ — мартингал относительно потока $\{\mathcal{F}_t^{\eta}\}$. Таким образом, требуемое представление имеет вид (10.24), где

$$\gamma(t) = \stackrel{\circ}{\eta}(t), \qquad A(t) = \mathbf{M}\{\eta(t)\} = \lambda t. \quad \blacksquare$$

Замечание. Представление (10.24) субмартингала $\eta(t)$ аналогично разложению Дуба (7.2) (для субмартингалов с дискретным временем), полученному в п. 7.1. При этом детерминированная неубывающая функция A(t) (A(0)=0) называется компенсатором субмартингала $\eta(t)$.

Далее будем предполагать, что траектории пуассоновского процесса непрерывны справа.

Пример 10.11. В условиях примера 10.10 оценить

$$\mathbf{P}ig\{\sup_{t\in[0,T]}|\eta(t)-\lambda t|\geqslantarepsilonig\}$$
 для $T=1,\,\lambda=2,\,arepsilon=4.$

Решение. Из примера 10.10 следует, что $\gamma(t)$ — центрированный непрерывный справа мартингал, причем $\mathbf{M}\big\{\gamma^2(t)\big\} = \mathbf{D}\big\{\eta(t)\big\} = \lambda t$, так как СВ $\eta(t)$ имеет распределение Пуассона с параметром $\mu = \lambda t$. Теперь воспользуемся неравенством Колмогорова:

$$\mathbf{P}\big\{\sup_{t\in[0,T]}|\eta(t)-\lambda t|\geqslant\varepsilon\big\}\leqslant\sup_{t\in[0,T]}\frac{D_{\eta}(t)}{\varepsilon^2}=\sup_{t\in[0,T]}\frac{\lambda t}{\varepsilon^2}=\frac{\lambda T}{\varepsilon^2}.$$

Отсюда при $T=1, \lambda=2, \varepsilon=4$ получаем

$$\mathbf{P}\big\{\sup_{t\in[0,T]}|\eta(t)-\lambda t|\geqslant\varepsilon\big\}\leqslant\frac{1}{8}=0.125.$$

Последнее означает, что с вероятностью, не меньшей 0,875, максимальное отклонение реального числа скачков процесса $\eta(t)$ от ожидаемого числа $m_{\eta}(t)=2t$ на промежутке времени [0,1] будет не больше четырех. \blacksquare

Пример 10.12. Доказать, что любой квадратично-интегрируемый мартингал является процессом с ортогональными приращениями.

Решение. Пусть $0 \le t_1 < t_2 \le t_3 < t_4$, тогда

$$\mathbf{M}\{\Delta\xi(t_1, t_2)\Delta\xi(t_3, t_4)\} = \mathbf{M}\{\mathbf{M}\{\Delta\xi(t_1, t_2)\Delta\xi(t_3, t_4) \mid \mathcal{F}_{t_3}\}\} =$$

=
$$\mathbf{M}\{\Delta \xi(t_1, t_2)\mathbf{M}\{\Delta \xi(t_3, t_4) \mid \mathcal{F}_{t_3}\}\} = 0,$$

где предпоследнее равенство справедливо в силу того, что приращение $\Delta \xi(t_1,t_2)$ измеримо относительно \mathcal{F}_{t_3} , а последнее — в силу $\mathbf{M}\{\Delta \xi(t_3,t_4)\mid \mathcal{F}_{t_3}\}=0$, как показано в примере 10.9. Таким образом, с учетом $\mathbf{M}\{\Delta \xi(t,s)\}=0$ получаем $\mathbf{cov}\{\Delta \xi(t_1,t_2),\Delta \xi(t_3,t_4)\}=0$, т. е. $\xi(t)$ — процесс с ортогональными приращениями.

Замечание. Если центрированный выходящий из нуля мартингал является гауссовским, то он квадратично интегрируем и имеет ортогональные приращения, которые (в силу гауссовости) являются независимыми. Таким образом, всякий гауссовский мартингал имеет независимые приращения. Наоборот, всякий центрированный выходящий из нуля гауссовский процесс с независимыми приращениями является квадратично-интегрируемым гауссовским мартингалом.

Для квадратично-интегрируемых мартингалов справедлив аналог разложения (7.5), которое выглядит наиболее просто, если рассматривается мартингал с независимыми приращениями.

T е о р е м а 10.1. Пусть $\xi(t)$ — квадратично-интегрируемый мартингал c независимыми приращениями. Тогда субмартингал $\eta(t)=\xi^2(t)$ допускает единственное разложение

$$\eta(t) = M(t) + \langle \xi \rangle_t, \qquad (10.25)$$

где M(t) — мартингал относительно потока $\{\mathcal{F}_t^{\xi}\}$, а $\langle \xi \rangle_t$ — неубывающая детерминированная функция (такая, что $\langle \xi \rangle_0 = 0$).

Функция $\langle \xi \rangle_t$ называется квадратической характеристикой мартингала $\xi(t)$.

Пример 10.13. Пусть $\{\xi(t),\ t\geqslant 0\}$ — квадратично-интегрируемый мартингал (относительно $\{\mathcal{F}_t^\xi\}$) с независимыми приращениями, $\xi(0)=0$. Показать, что $\langle\xi\rangle_t=D_\xi(t)$.

Решение. Вычислим $\mathbf{M}\Big\{\xi^2(s)-\xi^2(t) \mid \mathcal{F}_t^\xi\Big\}$ при $s\geqslant t$. Используя независимость в совокупности случайных величин

$$\Delta \xi(t,s), \quad \Delta \xi(0,t), \quad \xi(0),$$

мартингальное свойство $\mathbf{M}\Big\{\Delta \xi(t,s) \mid \mathcal{F}_t^\xi\Big\} = 0$ и результат примера 10.2, получаем

$$\begin{split} \mathbf{M} \Big\{ \xi^2(s) - \xi^2(t) \ \big| \ \mathcal{F}_t^\xi \Big\} &= \mathbf{M} \Big\{ (\xi(s) - \xi(t)) (\xi(s) + \xi(t)) \ \big| \ \mathcal{F}_t^\xi \Big\} = \\ &= \mathbf{M} \Big\{ \Delta \xi(t,s) [\Delta \xi(t,s) + 2\Delta \xi(0,t) + 2\xi(0)] \ \big| \ \mathcal{F}_t^\xi \Big\} = \\ &= \mathbf{M} \Big\{ (\Delta \xi(t,s))^2 \ \big| \ \mathcal{F}_t^\xi \Big\} = \mathbf{M} \big\{ (\Delta \xi(t,s))^2 \big\} = D_\xi(s) - D_\xi(t). \end{split}$$

Таким образом, процесс $M(t) = \xi^2(t) - D_{\xi}(t)$ удовлетворяет мартингальному свойству, а $\mathbf{M}\{|M(t)|\} < \infty$ в силу $\mathbf{M}\{\xi^2(t)\} < \infty$.

Естественным обобщением однородного пуассоновского процесса $\eta(t)$, у которого все скачки равны 1, является обобщенный пуассоновский процесс $\mathrm{H}(t)$, скачки которого образуют совокупность независимых случайных величин $\{\xi_i\}$, не зависящих также и от $\eta(t)$:

$$H(t) = \sum_{i=1}^{\eta(t)} \xi_i, \quad t \geqslant 0.$$

Таким образом, $\xi_i = \Delta H(\tau_i)$ — величина скачка процесса H(t) в момент τ_i , соответствующий i-му скачку процесса $\eta(t)$ на промежутке [0,t], где $i=1,\ldots,\eta(t)$. Будем считать, что заданы napamempu обобщенного пуассоновского процесса:

$$\lambda$$
, $\mu = \mathbf{M}\{\xi_i\}$, $D = \mathbf{D}\{\xi_i\}$,

где $\lambda > 0$ — интенсивность пуассоновского процесса $\eta(t)$.

Пример 10.14. Пусть $\mathbf{H}(t)$ — обобщенный пуассоновский процесс с параметрами (λ,μ,D) . Найти его математическое ожидание и дисперсию.

Решение. По формуле полного математического ожидания, используя независимость скачков $\{\xi_i\}$ от $\eta(t)$, находим

$$\begin{aligned} \mathbf{M} \{ \mathbf{H}(t) \} &= \sum_{n=1}^{\infty} \mathbf{M} \{ \mathbf{H}(t) \mid \eta(t) = n \} \, \mathbf{P} \{ \eta(t) = n \} = \\ &= \sum_{n=1}^{\infty} \mathbf{M} \Big\{ \sum_{i=1}^{n} \xi_{i} \mid \eta(t) = n \Big\} \mathbf{P} \{ \eta(t) = n \} = \sum_{n=1}^{\infty} \mathbf{M} \Big\{ \sum_{i=1}^{n} \xi_{i} \Big\} \mathbf{P} \{ \eta(t) = n \} = \\ &= \sum_{n=1}^{\infty} n \mu \, \mathbf{P} \{ \eta(t) = n \} = \mu \, \mathbf{M} \{ \eta(t) \} = \mu \lambda t. \end{aligned}$$

Аналогично получаем выражение для $\mathbf{M}\{\mathbf{H}^2(t)\}$:

$$\begin{aligned} \mathbf{M} \big\{ \mathbf{H}^{2}(t) \big\} &= \sum_{n=1}^{\infty} \mathbf{M} \big\{ \mathbf{H}^{2}(t) \mid \eta(t) = n \big\} \mathbf{P} \{ \eta(t) = n \} = \\ &= \sum_{n=1}^{\infty} \mathbf{M} \Big\{ \big(\sum_{i=1}^{n} \xi_{i} \big)^{2} \Big\} \mathbf{P} \{ \eta(t) = n \} = \sum_{n=1}^{\infty} \{ nD + (n\mu)^{2} \} \mathbf{P} \{ \eta(t) = n \} = \\ &= \mathbf{M} \{ \eta(t) \} D + \mathbf{M} \big\{ \eta^{2}(t) \big\} \mu^{2} = \lambda t D + (\lambda t + (\lambda t)^{2}) \mu^{2}, \end{aligned}$$

где учтено $\mathbf{M}\left\{\left(\sum_{i=1}^n \xi_i\right)^2\right\} = \sum_{i=1}^n \mathbf{D}\{\xi_i\} + \left(\sum_{i=1}^n \mathbf{M}\{\xi_i\}\right)^2$. Окончательно находим выражение для $\mathbf{D}\{\mathbf{H}(t)\}$:

$$\mathbf{M} \{ \mathbf{H}^{2}(t) \} - \left(\mathbf{M} \{ \mathbf{H}(t) \} \right)^{2} = \lambda t D + (\lambda t + (\lambda t)^{2}) \mu^{2} - (\lambda t \mu)^{2} = (D + \mu^{2}) \lambda t. \quad \blacksquare$$

Следующий пример показывает, что обобщенный пуассоновский процесс имеет независимые приращения.

 Π р и м е р 10.15. Доказать, что обобщенный пуассоновский процесс H(t) с параметрами (λ, μ, D) имеет независимые приращения.

Решение. Пусть $t_0=0< t_1<\ldots< t_n$. Докажем, что приращения $\Delta {\rm H}_j={\rm H}(t_j)-{\rm H}(t_{j-1}), j=1,\ldots,n$, независимы. Для этого достаточно доказать равенство

$$\Psi(z_1, \dots, z_n) = \Psi_1(z_1) \dots \Psi_n(z_n), \tag{10.26}$$

где $\Psi(z_1,\ldots,z_n)$ — характеристическая функция случайного вектора $\{\Delta H_1,\ldots,\Delta H_n\}^*$, а $\Psi_j(z_j)$ — характеристические функции случайных величин $\Delta H_j,\ j=1,\ldots,n$ (см. п. 14.3). Итак,

$$\Psi(z_1, \dots, z_n) = \mathbf{M} \left\{ \exp \left(i \sum_{j=1}^n z_j \Delta \mathbf{H}_j \right) \right\} = \mathbf{M} \left\{ \varphi(\eta(t_1), \dots, \eta(t_n)) \right\},$$
(10.27)

где функция $\varphi(m_1,\ldots,m_n)$ определяется выражением

$$\varphi(m_1, \dots, m_n) = \mathbf{M} \left\{ \exp \left(i \sum_{j=1}^n z_j \Delta \mathbf{H}_j \right) \mid \eta(t_1) = m_1, \dots, \eta(t_n) = m_n \right\}$$
(10.28)

для натуральных аргументов $m_1\leqslant\ldots\leqslant m_n$. Используя обозначение $\Delta \mathrm{H}_j(m)=\sum_{m_{j-1}< i\leqslant m_j}\xi_i$, в силу независимости скачков $\{\xi_i\}$ от $\eta(t)$ и неза-

висимости величин $\{\Delta {
m H}_{j}\left(m
ight),\ j=1,\,\ldots,n\}$ находим

$$\varphi(m_1, \dots, m_n) = \mathbf{M} \left\{ \exp \left(i \sum_{j=1}^n z_j \Delta \mathbf{H}_j(m) \right) \right\} =$$

$$= \prod_{j=1}^n \mathbf{M} \left\{ \exp(i z_j \Delta \mathbf{H}_j(m)) \right\} = \prod_{j=1}^n \Psi_{\xi}(z_j)^{m_j - m_{j-1}}, \quad (10.29)$$

где $\Psi_{\xi}(z_j)$ — характеристическая функция случайной величины ξ_j . Теперь из (10.27)–(10.29) с учетом независимости приращений пуассоновского процесса $\eta(t)$ получаем

$$\Psi(z_1, \dots, z_n) = \mathbf{M} \Big\{ \prod_{j=1}^n \Psi_{\xi}(z_j)^{(\eta(t_j) - \eta(t_{j-1}))} \Big\} =$$

$$= \prod_{j=1}^n \mathbf{M} \big\{ \Psi_{\xi}(z_j)^{(\eta(t_j) - \eta(t_{j-1}))} \big\}. \quad (10.30)$$

Повторяя дословно проделанные выкладки для функции $\Psi_j(z_j)$, находим

$$\Psi_j(z_j) = \mathbf{M} \{ \Psi_{\xi}(z_j)^{(\eta(t_j) - \eta(t_{j-1}))} \}.$$
 (10.31)

Теперь требуемое равенство (10.26) следует из (10.30) и (10.31). ■

С помощью обобщенного пуассоновского процесса можно определить важный класс квадратично-интегрируемых мартингалов.

T е о р е м а 10.2. Пусть H(t) — обобщенный пуассоновский процесс с параметрами (λ, μ, D) . Тогда процесс

$$\overset{\circ}{\mathrm{H}}(t) = \mathrm{H}(t) - \mu \lambda t$$

есть квадратично-интегрируемый мартингал с квадратической характеристикой

$$\langle \overset{\circ}{\mathbf{H}} \rangle_t = (D + \mu^2) \lambda t.$$

Еще один класс квадратично-интегрируемых мартингалов можно построить следующим образом.

Пример 10.16. Пусть задана последовательность независимых случайных величин $\{\delta_i\}$, таких, что $\mathbf{M}\{\delta_i\}=0$ и $\mathbf{M}\{\delta_i^2\}<\infty$. Пусть также задана детерминированная возрастающая последовательность моментов времени $\{\tau_i\}$. При каких условиях процесс

$$\xi(t) = \sum_{\tau_i \leqslant t} \delta_i$$

является квадратично-интегрируемым мартингалом?

Решение. На каждом интервале [0,t], таком, что число $N(t)=\sup\{i\colon \tau_i\leqslant t\}$ конечно, процесс $\xi(t)$ является квадратично-интегрируемым мартингалом с квадратической характеристикой

$$\left\langle \xi \right
angle _{t}=\sum_{i=1}^{N(t)}\mathbf{M}\left\{ \delta _{i}^{2}\right\} .$$

Если же $N(t)=\infty,$ то $\xi(t)$ — квадратично-интегрируемый мартингал, если $\sum_{i=1}^\infty \mathbf{M} \left\{ \delta_i^2 \right\} < \infty.$

Замечание. Построение процесса $\xi(t)$ очень напоминает построение обобщенного пуассоновского процесса с той лишь разницей, что у последнего скачки происходят в случайные моменты времени. Траектории обоих процессов также весьма похожи и представляют собой кусочно постоянные непрерывные справа функции. Однако их квадратические характеристики отличаются радикальным образом. Квадратическая характеристика обобщенного пуассоновского процесса непрерывна, откуда следует его с.к.-непрерывность в каждой точке. Квадратическая характеристика процесса $\xi(t)$ разрывна во всех точках $\{\tau_i\}$, где испытывают разрыв траектории самого процесса.

10.4. Винеровский процесс. Данный пункт мы посвятим изучению свойств наиболее важного процесса, принадлежащего семейству случайных функций с ортогональными приращениями.

Определение 10.9. Случайная функция $\{w(t), t \ge 0\}$ называется винеровским процессом, если:

- a) w(0) = 0, $\mathbf{M}\{w(t)\} = 0$;
- б) w(t) однородный процесс с независимыми приращениями;
- в) w(t) гауссовский процесс.

Из приведенного определения сразу следует, что при любом t>0 сечение w(t) имеет распределение $\mathcal{N}(0;\sigma^2t)$, а приращение $\Delta w(t,s)$ — распределение $\mathcal{N}(0;\sigma^2|t-s|)$, где $\mathcal{N}(a;D)$ — гауссовское распределение со средним a и дисперсией b. Указанные характеристики позволяют

рассчитывать вероятности некоторых простых событий, связанных с винеровским процессом.

Пример 10.17. Пусть w(t) — винеровский процесс с интенсивностью $\sigma^2 > 0$. Вычислить вероятность того, что в момент T > 0 траектория w(t) окажется выше уровня x (т. е. $\mathbf{P}\{w(T) > x\}$).

траектория w(t) окажется выше уровня x (т. е. $\mathbf{P}\{w(T)>x\}$). Решение. По условию $\mathbf{M}\{w(t)\}=0$, а $D_w(t)=\sigma^2 t$, поэтому w(t) имеет распределение $\mathcal{N}(0;\sigma^2 t)$. Отсюда величина $\widetilde{w}(t)=\frac{w(t)}{\sigma\sqrt{t}}$ имеет стандартное гауссовское распределение $\mathcal{N}(0;1)$. Следовательно,

$$\mathbf{P}\{w(T) > x\} = \mathbf{P}\left\{\widetilde{w}(T) > \frac{x}{\sigma\sqrt{T}}\right\} = 1 - \Phi\left(\frac{x}{\sigma\sqrt{T}}\right),\,$$

где
$$\Phi(z)=rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{z}e^{-t^2/2}\,dt$$
 — функция распределения СВ $\widetilde{w}(T)$

(функция Лапласа).

В частности, $\mathbf{P}\{|w(t)| \leq 3\sigma\sqrt{t}\} = \Phi(3) - \Phi(-3) \approx 0,997$ для всякого t>0, т.е. выход траектории винеровского процесса за пределы области $|x| \leq 3\sigma\sqrt{t}$ маловероятен (см. рис. 10.1).

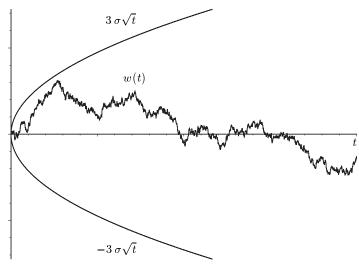


Рис. 10.1

Оказывается, что w(t) обладает многими интересными свойствами, которые мы приведем без доказательства.

- 1) Винеровский процесс является марковским процессом.
- 2) Почти все траектории винеровского процесса *непрерывные* функции (рис. 10.1).

- 3) Почти все траектории винеровского процесса не дифференцируемы ни в одной точке.
- 4) С вероятностью 1 на любом конечном отрезке [t,s], t < s, траектория винеровского процесса имеет *неограниченную вариацию*.
- 5) Винеровский процесс описывает симметричное блуждание частицы по действительной прямой (w(t) координата частицы в момент $t \geqslant 0$):

$$\mathbf{P}\{w(t)>0\} = \mathbf{P}\{w(t)<0\} = \frac{1}{2} \quad \text{при} \quad t>0.$$

Более того, если τ_x — случайный момент первого пересечения траекторией w(t) уровня x, то дальнейшее блуждание также симметрично:

$$\mathbf{P}\{w(t) > x \mid \tau_x \leqslant t\} = \mathbf{P}\{w(t) < x \mid \tau_x \leqslant t\} = \frac{1}{2}.$$
 (10.32)

6) Пусть $\{\varphi_k(t)\}_{k=1}^{\infty}$ — ортонормированный базис гильбертова пространства $L_2[0,T]$ функций, квадратично-интегрируемых на отрезке [0,T], а $\{V_k\}_{k=1}^{\infty}$ — гауссовский стандартный дискретный белый шум. Тогда процесс

$$w(t) = \sum_{k=1}^{\infty} V_k \int_{0}^{t} \varphi_k(\tau) d\tau, \quad t \in [0, T],$$
 (10.33)

является стандартным винеровским процессом на [0,T] (сходимость ряда в (10.33) понимается в с.к.-смысле).

7) Винеровский процесс w(t) является непрерывным гауссовским квадратично-интегрируемым мартингалом с квадратической характеристикой $\langle w \rangle_t = D_w(t) = \sigma^2 t$.

Приведенные свойства винеровского процесса w(t) позволяют исследовать более сложные его характеристики.

Пусть x>0 — заданное число. Обозначим через τ_x случайный момент первого пересечения уровня x траекторией винеровского процесса w(t), упомянутый в свойстве 5:

$$\tau_x = \inf\{t \geqslant 0 \colon w(t) \geqslant x\}. \tag{10.34}$$

Рассмотрим вероятностные характеристики СВ τ_x .

Пример 10.18. Найти закон распределения СВ τ_x , определяемой соотношением (10.34). Выяснить, любой ли уровень x будет преодолен. Если да, то сколько в среднем придется ожидать момента наступления этого события?

Решение. Пусть t>0 таково, что w(t)>x>0. В силу непрерывности w(t) (см. свойство 2) это возможно, только если до момента t траектория $\{w(\tau), \tau \geqslant 0\}$ уже пересекла уровень x, т. е. произошло событие $\{\tau_x \leqslant t\}$. Таким образом, случайное событие $\{w(t)>x\}$ влечет

 $\{\tau_x \leqslant t\}$, поэтому $\{w(t) > x\} \cap \{\tau_x \leqslant t\} = \{w(t) > x\}$. С учетом этого, используя формулу умножения вероятностей, получаем

$$\mathbf{P}\{w(t) > x\} = \mathbf{P}\{w(t) > x, \, \tau_x \leqslant t\} = \mathbf{P}\{w(t) > x \mid \tau_x \leqslant t\} \, \mathbf{P}\{\tau_x \leqslant t\}.$$

Итак,

$$\mathbf{P}\{w(t) > x \mid \tau_x \leqslant t\} = \mathbf{P}\{w(t) > x\} / \mathbf{P}\{\tau_x \leqslant t\}.$$
 (10.35)

Из свойства симметрии винеровского процесса (см. свойство 5) и соотношения (10.32) следует, что левая часть (10.35) равна 1/2. Поэтому

$$\mathbf{P}\{\tau_x \leqslant t\} = 2\,\mathbf{P}\{w(t) > x\}\,,\tag{10.36}$$

где $\mathbf{P}\{\tau_x\leqslant t\}=F_{\tau_x}(t)$ — искомая функция распределения СВ τ_x , причем из примера 10.17 следует, что $\mathbf{P}\{w(t)>x\}=1-\varPhi\left(\frac{x}{\sigma\sqrt{t}}\right)$. Таким образом,

$$F_{\tau_x}(t) = 2\left(1 - \Phi\left(\frac{x}{\sigma\sqrt{t}}\right)\right) = \sqrt{\frac{2}{\pi}} \int_{x/\sigma\sqrt{t}}^{\infty} e^{-z^2/2} dz.$$
 (10.37)

Из (10.37) следует, что $F_{\tau_x}(t)$ — непрерывно дифференцируемая функция, т. е. СВ τ_x имеет непрерывную плотность вероятности:

$$f_{\tau_x}(t) = F'_{\tau_x}(t) = \frac{x}{\sqrt{2\pi}\sigma t^{3/2}} e^{-x^2/(2\sigma^2 t)}, \quad t > 0.$$
 (10.38)

Соотношения (10.37) и (10.38) позволяют сделать следующие выводы:

а) $\mathbf{P}\{\tau_x<\infty\}=1$ при любом конечном x>0, т. е. траектория винеровского процесса рано или поздно пересечет сколь угодно высокий барьер x;

б)
$$\mathbf{M}\{\tau_x\}=\int\limits_0^\infty t f_{\tau_x}(t)\,dt=\infty$$
, т.е. среднее время ожидания этого

В завершение рассмотрим пример, иллюстрирующий связь винеровского процесса с некоторой последовательностью случайных блужданий частицы по дискретным точкам вещественной прямой.

пересечения бесконечно велико.

блужданий частицы по дискретным точкам вещественной прямой. В частности, мы выясним причину, по которой винеровский процесс оказывается гауссовским.

 Π ример 10.19. Показать, что винеровский процесс w(t) можно рассматривать как предел последовательности случайных блужданий на прямой.

Решение. Под дискретным случайным блужданием на прямой будем понимать случайную последовательность $\{w_n(\tau), \tau=0, \Delta t, 2\Delta t, \dots, n\Delta t\}$, где t>0, $\Delta t=t/n$, $n\gg 1$, обладающую следующим свойством: если точка в момент τ имеет координату $w_n(\tau)$, то в следующий момент $\tau+\Delta t$ она переходит либо в точку $w_n(\tau)+\Delta w$, либо в точку $w_n(\tau)-\Delta w$, где $\Delta w>0$ — (пространственный) шаг блуждания, а само блуждание симметрично, т. е.

$$\mathbf{P}\{w_n(\tau + \Delta t) = w_n(\tau) + \Delta w\} =$$

$$= \mathbf{P}\{w_n(\tau + \Delta t) = w_n(\tau) - \Delta w\} = 1/2. \quad (10.39)$$

Пусть $w_n(0)=0$ — начальная координата блуждающей точки и к моменту времени t сделано $n=t/\Delta t$ шагов. Тогда $w_n(t)=\sum_{k=1}^n w_{nk},$ где $\{w_{nk}\}$ — соответствующие случайные шаги. По построению случайные величины $\{w_{nk}\}$ независимы в совокупности и

$$\mathbf{P}\{w_{nk} = \Delta w\} = \mathbf{P}\{w_{nk} = -\Delta w\} = 1/2.$$

Отсюда $\mathbf{M}\{w_{nk}\}=0$, а $\mathbf{D}\{w_{nk}\}=(\Delta w)^2$. Поэтому $w_n(t)$ имеет следующие характеристики:

$$\mathbf{M}\{w_n(t)\} = \sum_{k=1}^{n} \mathbf{M}\{w_{nk}\} = 0;$$

$$\mathbf{D}\{w_n(t)\} = \sum_{k=1}^{n} \mathbf{D}\{w_{nk}\} = n\Delta w^2 = t\frac{(\Delta w)^2}{\Delta t}.$$

Будем считать t фиксированным, а Δt и Δw устремим к нулю так, чтобы $\frac{(\Delta w)^2}{\Delta t} = \sigma^2 = \mathrm{const} > 0$, причем $n = \frac{t}{\Delta t} \to \infty$. Рассмотрим предел (по распределению) последовательности $\widetilde{w}_n(t) = \frac{w_n(t)}{\sigma \sqrt{t}}$. Из центральной предельной теоремы (см. п. 14.6) следует, что

$$\mathbf{P}\{\widetilde{w}_n(t) \leqslant x\} \to \Phi(x)$$
 при $n \to \infty$,

т. е. предельная величина $\widetilde{w}(t)$ имеет стандартное гауссовское распределение. Нетрудно показать, что для всякого набора чисел $\{\lambda_k\}_{k=1}^m$ и моментов времени $0\leqslant t_1\leqslant t_2\leqslant\ldots\leqslant t_m\leqslant t$ СВ $\xi_n=\sum_{k=1}^m\lambda_k\widetilde{w}_n(t_k)$ также в пределе имеет гауссовское распределение. Это означает, что $\widetilde{w}(t)$ является гауссовской случайной функцией, а следовательно, $w(t)=\widetilde{w}(t)\sigma\sqrt{t}$ — также гауссовская функция, причем $\mathbf{M}\{w(t)\}=0$, $\mathbf{D}\{w(t)\}=\sigma^2t,\,w(0)=0$, а однородность и независимость приращений

14 Б.М. Миллер и А.Р. Панков

процесса w(t) следуют из способа построения блужданий $\{w_n(t)\}$. Таким образом, w(t) — винеровский процесс с интенсивностью $\sigma^2 > 0$.

Из полученного результата следует способ физической интерпретации винеровского процесса w(t): если на промежутке [0,t] точка делает случайные шаги с интервалом времени Δt , а величина шага равна Δw , то при условии, что шагов совершается много, т. е. $n=t/\Delta t$ велико, можно считать, что $\{w_n(\tau)\approx w(\tau),\,\tau\in[0,t]\}$. При этом интенсивность процесса блуждания определяется величиной $\sigma^2=(\Delta w)^2/\Delta t$. Очевидно, что если $(\Delta w)^2=\Delta t$, то в пределе мы получим стандартный винеровский процесс.

10.5. Задачи для самостоятельного решения.

1. Пусть $\xi(t)$ — процесс с ортогональными приращениями, имеющий математическое ожидание $m_{\xi}(t)$. Доказать, что процесс $\eta(t) = \xi(t) - m_{\xi}(t) - (\xi(0) - m_{\xi}(0))$ — центрированный и имеет ортогональные приращения.

2. Пусть $\xi_1(t)$ и $\xi_2(t)$ — независимые случайные функции с независимыми приращениями. Доказать, что $\xi(t)=\xi_1(t)+\xi_2(t)$ также имеет независимые приращения.

3. Пусть $\{\xi(t), \mathcal{F}_t\}, t\geqslant 0,$ — субмартингал, а f(x) — непрерывная и монотонно неубывающая выпуклая вниз функция и $\mathbf{M}\{|f(\xi(t))|\}<\infty$. Показать, что $\{f(\xi(t)), \mathcal{F}_t\}, t\geqslant 0,$ — также субмартингал.

4. Доказать свойства 1-3 мартингалов и субмартингалов из п. 10.3.

5. Доказать теорему 10.2.

Указание. Воспользоваться результатами примеров 10.13–10.15.

6. Пусть $\xi_1(t)$, $\xi_2(t)$ — квадратично-интегрируемые мартингалы относительно некоторого потока $\{\mathcal{F}_t\}$. Показать, что $\xi_1(t)+\xi_2(t)$ — также квадратично-интегрируемый мартингал относительно $\{\mathcal{F}_t\}$.

7. Пусть $\xi(t)$ — однородный процесс с независимыми приращениями, выходящий из нуля, а $\Psi_{\xi}(\lambda;\,t)$ — его одномерная характеристическая функция. Доказать равенство

$$\Psi_{\xi}(\lambda; t+s) = \Psi_{\xi}(\lambda; t)\Psi_{\xi}(\lambda; s), \quad t, s \geqslant 0.$$

Указание. Воспользоваться тем, что характеристическая функция суммы независимых случайных величин равна произведению их характеристических функций.

8. Пусть $\eta(t) = \int\limits_0^t \tau\,dw(\tau),$ где $w(\tau)$ — стандартный винеровский процесс.

Вычислить $m_{\eta}(t)$ и $D_{\eta}(t)$.

Otbet.
$$m_{\eta}(t) = 0, D_{\eta}(t) = t^3/3.$$

9. Доказать, что стандартный винеровский процесс w(t) с.к.-интегриру-

ем на [0,t], и найти $R_{\eta}(t,s),$ где $\eta(t)=\int\limits_{0}^{t}w(\tau)\;d\tau.$

Ответ.
$$R_{\eta}(t,s) = a^2(3b-a)/6$$
, где $a = \min(t,s), b = \max(t,s)$.

 $\mathbf{10.}$ Пусть $\eta(t) = \max_{ au \in [0,t]} w(au),$ где w(au) — стандартный винеровский про-

цесс. Найти закон распределения случайной величины $\eta(t)$ при любом t>0. У казание. Учесть $\mathbf{P}\{\eta(t)>x\}=\mathbf{P}\{\tau_x\leqslant t\}$ и использовать решение примера 10.18.

ответ.
$$F_{\eta(t)}(x) = \sqrt{2/\pi} \int\limits_{0}^{x/\sqrt{t}} e^{-z^2/2} \, dz.$$

11. Доказать, что если $\{w(t),\ t\geqslant 0\}$ — винеровский процесс, то для всякого $\varepsilon>0$ имеет место сходимость $\mathbf{P}\left\{\sum_{k=0}^{n-1}|w(t_{k+1})-w(t_k)|>\varepsilon\right\}\to 1$ при $\max_k|t_{k+1}-t_k|\to 0$, где $0=t_0\leqslant t_1\leqslant\ldots\leqslant t_n=1$ (неограниченность вариации винеровского процесса на конечном интервале).

Указание. Вычислить математическое ожидание a и дисперсию указанной суммы и, воспользовавшись неравенством Чебышева, показать, что $\mathbf{P}\{a-\sum_{k=0}^{n-1}|w(t_{k+1})-w(t_k)|\geqslant a-\varepsilon\}\to 0.$

12. Доказать, что винеровский процесс является марковским.

У казание. Проверить выполнение условия марковости для гауссовского процесса из примера 2.12.

13. Доказать, что винеровский процесс является квадратично-интегрируемым мартингалом, и найти его квадратическую характеристику.

Ответ. $\langle w \rangle_t = \sigma^2 t$.

14. Пусть $\{\xi(t),t\geqslant 0\}$ — пуассоновский процесс с интенсивностью $\lambda>0$. Показать, что при $\Delta t\downarrow 0$ выполнено:

$$\mathbf{P}\{\xi(t+\Delta t) - \xi(t) = 0\} = 1 - \lambda \Delta t + o(\Delta t),$$

$$\mathbf{P}\{\xi(t+\Delta t) - \xi(t) = 1\} = \lambda \Delta t + o(\Delta t), \qquad \mathbf{P}\{\xi(t+\Delta t) - \xi(t) > 1\} = o(\Delta t).$$

Указание. Учесть, что $e^{-\lambda x} = 1 - \lambda x + o(x)$.

15. Пусть $\{\xi(t),\ t\geqslant 0\}$ — с.к.-непрерывный однородный процесс с ортогональными приращениями, а функция $\varphi(\tau)$ такова, что $\int\limits_0^t \varphi^2(\tau)\,d\tau < \infty$ для всех $t\geqslant 0$. Доказать, что процесс $\eta(t)=\int\limits_0^t \varphi(\tau)\,d\xi(\tau)$ является с.к.-непрерывным процессом с ортогональными приращениями.

16. Пусть w(t) — стандартный винеровский процесс. Показать, что процесс

$$\eta(t) = \exp\{w(t) - t/2\} - 1$$

центрированный и имеет ортогональные приращения.

У казание. Воспользоваться тем, что $\mathbf{M}\{e^{\xi}\}=e^{D/2}$ для $\xi\sim\mathcal{N}(0;D)$.

17. Пусть $\eta(t)$ — однородный пуассоновский процесс с интенсивностью $\lambda>0$. Показать, что $\xi(t)=\exp\{\eta(t)-at\}$ — субмартингал относительно потока $\{\mathcal{F}_t^n\}$, если $a\leqslant \lambda(e-1)$.

У казание. Вычислить $\mathbf{M}\{\xi(s)\mid \mathcal{F}_t^{\eta}\}$ для $s\geqslant t$, предварительно доказав, что в условиях задачи $\mathbf{M}\{\exp\{\eta(s)-\eta(t)-a(s-t)\}\}\geqslant 1.$

§ 11. Стохастические дифференциальные уравнения

11.1. Стохастический интеграл Ито. Выше мы познакомились с понятием стохастического интеграла от неслучайной функции по стохастической мере, порожденной процессом с ортогональными приращениями. Теперь мы расширим это понятие и рассмотрим стохастические интегралы от случайных функций по стохастической мере, порожденной винеровским процессом.

Пусть стандартный винеровский процесс $w(t), t \in [0, T] = \Delta$ задан на вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$. Пусть также $\mathcal{B} - \sigma$ -алгебра борелевских множеств на действительной оси.

Выберем некоторое $t \in \Delta$ и введем σ -алгебру событий \mathcal{F}_t , порожденную случайной функцией $\{w(s), s \leqslant t\}$.

О пределение 11.1. Система событий \mathcal{F}_t , являющаяся наименьшей σ -алгеброй, содержащей все события вида $\{w(s) \in B\} \ \forall s \leqslant t, \ \forall B \in \mathcal{B}$, называется σ -алгеброй, порожденной $\{w(s), s \leqslant t\}$. Для \mathcal{F}_t будем использовать обозначение $\mathcal{F}_t = \sigma\{w(s), s \in [0,t]\}$.

Замечания. 1) Очевидно, что по определению $\mathcal{F}_t \subseteq \mathcal{F}$ при любом $t \leqslant T$ (так как \mathcal{F} содержит все события вида $\{w(t) \in B\}$ при $B \in \mathcal{B}$). Кроме того, если $0 \leqslant s \leqslant t \leqslant T$, то $\mathcal{F}_s \subseteq \mathcal{F}_t$, что также очевидно. В этом случае говорят, что $\{\mathcal{F}_t, t \in \Delta\}$ — $nomok\ \sigma$ -алгебр.

2) σ -алгебра \mathcal{F}_t имеет ясный физический смысл: в \mathcal{F}_t содержатся все события, о наступлении которых можно узнать, наблюдая процесс $\{w(s)\}$ на промежутке [0,t] (естественно, речь идет о событиях, содержащихся в множестве \mathcal{F} и, следовательно, имеющих вероятность).

Определение 11.2. Случайная функция $\{f(t), t \in \Delta\}$ называется неупреждающей относительно процесса $\{w(t), t \in \Delta\}$, если при любом $t \in \Delta$ случайная величина f(t) является \mathcal{F}_t -измеримой (т. е. $\{f(t) \in B\} \in \mathcal{F}_t$ для всякого $B \in \mathcal{B}$).

Для начала мы определим стохастический интеграл по винеровской мере на конечном интервале $\Delta=[0,T]$ для случайных функций f(t) специального вида — простых функций.

Пусть интервал Δ разбит на промежутки $\{\Delta_k\},\,k=1,\ldots,n$: $\Delta=$

$$=igcup_{k=1}^n \Delta_k$$
, где $\Delta_1=[t_1,t_2],\, \Delta_2=(t_2,t_3],\, \ldots\,,\, \Delta_n=(t_n,t_{n+1}].$

Определение 11.3. Случайная функция f(t) называется $npo-cmo\ddot{u}$, если она имеет вид

$$f(t) = \sum_{k=1}^{n} \xi_k I_{\Delta_k}(t), \quad t \in \Delta,$$
(11.1)

где $I_{\Delta_k}(t)$ — индикатор промежутка Δ_k , т. е.

$$I_{\Delta_k}(t) = \left\{ egin{array}{ll} 1, & \mathrm{если} & t \in \Delta_k, \\ 0, & \mathrm{если} & t \notin \Delta_k, \end{array}
ight.$$

причем ξ_k — случайные величины, такие, что $\mathbf{M}\{|\xi_k|^2\} = D_k < \infty$.

Замечание. Из определения 11.3 следует, что функция f(t) — неупреждающая, если ξ_k измерима относительно $\mathcal{F}_{t_k}, \ k=1,\ldots,n$. Действительно, если $t\in\Delta_k$, то $f(t)=\xi_k$ измерима относительно \mathcal{F}_{t_k} , но $t_k < t$ и поэтому $\mathcal{F}_{t_k}\subseteq \mathcal{F}_t$, т. е. f(t) является \mathcal{F}_t -измеримой.

Определение 11.4. Стохастическим интегралом от простой неупреждающей функции f(t) по винеровскому процессу $\{w(t), t \in \Delta\}$ называется случайная величина

$$I(f) = \int_{\Delta} f(t) dw(t) = \sum_{k=1}^{n} \xi_k \Delta w_k, \qquad (11.2)$$

где $\Delta w_k = w(t_{k+1}) - w(t_k)$ — приращение винеровского процесса w(t) на промежутке Δ_k .

Рассмотрим некоторые свойства стохастического интеграла I(f) от простой неупреждающей функции f(t).

Пример 11.1. Доказать, что I(f) обладает следующими свойствами:

- 1) $I(\alpha_1f_1+\alpha_2f_2)=\alpha_1I(f_1)+\alpha_2I(f_2)$, если α_1,α_2 неслучайные числа, а $f_1(t),f_2(t)$ простые неупреждающие функции;
 - 2) $\mathbf{M}\{I(f)\} = 0;$

3)
$$\mathbf{M}\{|I(f)|^2\} = \int_{\Lambda} \mathbf{M}\{|f(t)|^2\} dt < \infty.$$

Решение. Если $f_1(t), f_2(t)$ — простые случайные функции, причем $f_1(t), f_2(t)$ измеримы относительно \mathcal{F}_t , то этими же свойствами обладает также их линейная комбинация $f(t) = \alpha_1 f_1(t) + \alpha_2 f_2(t)$, т. е. f(t) — простая неупреждающая функция. Теперь свойство 1 следует непосредственно из (11.2) и линейности операции суммирования.

Далее
$$\mathbf{M}\{I(f)\} = \sum_{k=1}^{n} \mathbf{M}\{\xi_k \Delta w_k\},$$
 где

$$\mathbf{M}\{\xi_k \Delta w_k\} = \mathbf{M}\{\mathbf{M}\{\xi_k \Delta w_k \mid \mathcal{F}_{t_k}\}\} =$$

$$= \mathbf{M}\{\xi_k \mathbf{M}\{\Delta w_k \mid \mathcal{F}_{t_k}\}\} = \mathbf{M}\{\xi_k\} \mathbf{M}\{\Delta w_k\} = 0.$$

Здесь учтено, что Δw_k не зависит от \mathcal{F}_{t_k} по свойству независимости приращений винеровского процесса, $\mathbf{M}\{w(t)\}=0$ и ξ_k измерима относительно \mathcal{F}_{t_k} . Отсюда следует справедливость свойства 2.

Аналогично,

$$\mathbf{M}\{|\xi_k \Delta w_k|^2\} = \mathbf{M}\{|\xi_k|^2\} \mathbf{M}\{|\Delta w_k|^2\} = D_k(t_{k+1} - t_k).$$

Если k < l, то $\mathbf{M}\{\xi_k \Delta w_k f_l \Delta w_l\} = \mathbf{M}\{\xi_k \Delta w_k f_l\} \mathbf{M}\{\Delta w_l\} = 0$, что также верно и для k > l. Следовательно,

$$\mathbf{M}\{|I(f)|^2\} = \sum_{k=1}^n D_k(t_{k+1} - t_k) =$$

$$= \sum_{k=1}^n \mathbf{M}\{|\xi_k|^2\} (t_{k+1} - t_k) = \int_{\mathbf{M}} \mathbf{M}\{|f(t)|^2\} dt.$$

Таким образом, свойство 3 также выполнено. ■

Для построения стохастического интеграла от более сложных неупреждающих функций f(t) нам понадобится следующее утверждение.

 ${
m T}$ е о р е м а 11.1. ${
m \it \Pi}$ усть $\{f(t), t \in \Delta\} - c$. κ -непрерывная функция.

1) Если f(t) — неупреждающая, то найдется последовательность простых неупреждающих функций $\{f_n(t)\}$, такая, что

$$\int_{\Lambda} \mathbf{M}\{|f(t) - f_n(t)|^2\} dt \to 0 \quad npu \quad n \to \infty.$$
 (11.3)

2) Имеет место с. к.-сходимость последовательности стохастических интегралов $I(f_n)$:

$$I(f_n) \xrightarrow{\mathrm{c.k.}} I(f) \quad npu \quad n \to \infty.$$
 (11.4)

Теперь мы можем определить интеграл от $f(t), t \in \Delta$.

O пределение 11.5. Случайная величина $I(f)=\int\limits_{\Delta}f(t)\,dw(t),$

определенная в (11.4), называется стохастическим интегралом Ито от случайной неупреждающей функции f(t).

Из (11.3), (11.4) и свойств с.к.-сходимости (см. п. 14.4) следует, что I(f) для f(t) общего вида также обладает свойствами 1–3 (см. пример 11.1). Заметим, что определение 11.5 корректно в том смысле, что предел I(f) зависит лишь от f(t) и не зависит от конкретного выбора последовательности $\{f_n(t)\}$ простых неупреждающих функций, аппроксимирующих f(t) в смысле соотношения (11.3).

T е о р е м а 11.2. Èсли $\{f(t), t \in \Delta\}$ — $c.\kappa$ -непрерывная функция, заданная на конечном промежутке $\Delta = [0,T]$ и неупреждающая относительно потока σ -алгебр $\{\mathcal{F}_t\}$, где $\mathcal{F}_t = \sigma\{w(s), s \in [0,t]\}$, то стохастический интеграл $I(f) = \int\limits_{\Delta} f(t) \, dw(t)$ существует и облада-

ет свойствами 1-3, приведенными в примере 11.1.

Замечание. Без ограничения общности можно считать, что $\mathbf{M}\{f(t)\}\equiv 0$ на [0,T], так как в противном случае

$$I(f) = I(m_f) + I(\mathring{f}),$$

где $m_f(t)=\mathbf{M}\{f(t)\},$ а $\overset{\circ}{f}(t)=f(t)-m_f(t)$ — центрированная случайная функция. При этом $I(m_f)$ есть интеграл от неслучайной функции по ортогональной стохастической мере (см. п. 14.9), а $I(f)^{\circ}$ — интеграл Ито. Последнее означает, что вместо с.к.-непрерывности СФ f(t) мы можем требовать с.к.-непрерывность лишь $\ddot{f}(t)$. При этом математическое ожидание $m_f(t)$ может быть кусочно непрерывной функцией (напомним, что с.к.-непрерывность f(t) влечет непрерывность $m_f(t)$

Интеграл I(f) для с.к.-непрерывной на $\Delta = [0,T]$ функции f(t)можно ввести и по-другому. Пусть $\Delta = \bigcup_{k=1}^n \Delta_k$ — разбиение интер-

вала Δ на n подынтервалов Δ_k одинаковой длины h=T/n. Пусть $\{t_k\}_{k=1}^{n+1}$ — точки разбиения, тогда $t_{k+1}-t_k=h$. Обозначим

$$I_n(f) = \sum_{k=1}^n f(t_k) \Delta w_k,$$
 (11.5)

где Δw_k — приращение процесса w(t) на промежутке Δ_k . Теорем а 11.3. Пусть выполнены условия теоремы 11.2, тогда $I_n(f) \xrightarrow{\mathrm{c.k.}} I(f)$ npu $n \to \infty$, sde I(f) — интеграл Ито, а $I_n(f)$ интегральные суммы вида (11.5).

Заметим, что представление (11.5) зачастую более удобно для практических вычислений. Рассмотрим использование интегральных сумм (11.5) на примере.

Пример 11.2. Доказать, что

$$\int_{0}^{T} w(t) dw(t) = \frac{1}{2} (w^{2}(T) - T).$$
 (11.6)

 ${
m P}$ е ш е н и е. Заметим сразу, что Δw_k имеет распределение $\mathcal{N}(0;h)$ (см. п. 10.4), поэтому $\mathbf{M}\{|\Delta w_k|^2\} = h$, а $\mathbf{M}\{|\Delta w_k|^4\} = 3\mathbf{M}^2\{|\Delta w_k|^2\} = h$ $=3h^2$ по известному свойству гауссовского распределения. Заметим также, что $h = T/n \to 0$ при $n \to \infty$.

Рассмотрим и преобразуем k-й член в интегральной сумме (11.5):

$$w(t_k)\Delta w_k = \frac{1}{2}[w^2(t_{k+1}) - w^2(t_k)] - \frac{1}{2}(\Delta w_k)^2.$$

Отсюда для $I_n(w)$ получаем:

$$I_n(w) = \sum_{k=1}^n w(t_k) \Delta w_k = \frac{1}{2} [w^2(T) - w^2(0)] - \frac{1}{2} \sum_{k=1}^n (\Delta w_k)^2,$$

$$\mathbf{M}\left\{\sum_{k=1}^{n} (\Delta w_k)^2\right\} = \sum_{k=1}^{n} \mathbf{M}\left\{(\Delta w_k)^2\right\} = n \cdot h = T,$$

$$\mathbf{D}\Big\{\sum_{k=1}^{n} (\Delta w_{k})^{2}\Big\} = \sum_{k=1}^{n} \mathbf{D}\Big\{(\Delta w_{k})^{2}\Big\} = n \cdot 2h^{2} = \frac{2T^{2}}{n} \to 0, \quad n \to \infty,$$

так как
$$\mathbf{D}\{(\Delta w_k)^2\} = \mathbf{M}\{(\Delta w_k)^4\} - \mathbf{M}^2\{(\Delta w_k)^2\} = 3h^2 - h^2 = 2h^2.$$

Таким образом, $\sum_{k=1}^n (\Delta w_k)^2 \xrightarrow{\text{с.к.}} T$ при $n \to \infty$, откуда в силу w(0)=0 и теоремы 11.3

$$I_n(w) \xrightarrow{\text{c.k.}} \frac{1}{2}(w^2(T) - T), \quad n \to \infty,$$

что и требовалось доказать.

Замечания. 1) Рассмотренный пример показывает, что свойства интеграла Ито отличаются от привычных свойств интеграла Стилтьеса. Например, формула интегрирования по частями в общем случае не имеет места. Действительно, если она была бы верна, то

$$\int_{0}^{T} w(t) dw(t) = w^{2}(t) \Big|_{0}^{T} - \int_{0}^{T} w(t) dw(t),$$

т. е. $2I(w)=w^2(T)$, что неверно в силу результата примера 11.2.

2) В формуле (11.5) выбор точки t_k для вычисления f(t) на Δ_k (выбор левого конца промежутка Δ_k) является принципиальным. Если выбрать $\theta \in [0,1]$, положить $t_k^\theta = (1-\theta)t_k + \theta t_{k+1}$ и составить интегральную сумму

$$I_n^{\theta}(f) = \sum_{k=1}^n f(t_k^{\theta}) \Delta w_k, \qquad (11.7)$$

то в условиях теоремы 11.3 справедливо утверждение:

$$I_n^{\theta}(f) \xrightarrow{\mathrm{C.K.}} I^{\theta}(f)$$
 при $n \to \infty$,

причем предельная величина $I^{\theta}(f)$ в общем случае зависит от θ и называется cmoxacmuveckum θ -unmerpanom. Очевидно, что если

 $\theta=0$, то $I^0(f)$ — интеграл Ито. Если же $\theta=1/2$, то интеграл $I^{1/2}(f)$ называется *интегралом Стратоновича*. В условиях примера 11.2 можно показать, что $I^{1/2}(w)=\frac{1}{2}w^2(T)$, а $I^1(w)=\frac{1}{2}(w^2(T)+T)$, так

что значения указанных интегралов могут различаться очень существенно, если T велико. Естественно, если f(t) — неслучайная кусочно непрерывная функция, то значения всех θ -интегралов совпадают, а интеграл I(f) обладает свойствами с.к.-интеграла по ортогональной стохастической мере (см. п. 14.9).

3) Рассмотрим случайную функцию

$$\eta(t) = \int\limits_0^t f(au) \, dw(au), \quad t \in [0,T],$$

т. е. интеграл Ито с переменным верхним пределом. В рамках принятых нами условий выполняются следующие утверждения:

- а) случайная величина $\eta(t)$ измерима относительно \mathcal{F}_t ;
- б) $\eta(t)$ непрерывный центрированный процесс с ортогональными приращениями, дисперсия которого имеет вид

$$D_{\eta}(t) = \int_{0}^{t} \mathbf{M} \left\{ f^{2}(\tau) \right\} d\tau;$$

в) $\eta(t)$ является мартингалом относительно потока $\{\mathcal{F}_t\}$, $t \geqslant 0$, (см. п. 10.3), т. е. для $s \leqslant t$ справедливо $\mathbf{M}\{\eta(t) \mid \mathcal{F}_s\} = \eta(s)$ (\mathbf{P} -п.н.).

Предположим, что случайная функция $\eta(t)$ может быть представлена для каждого $t\in [0,T]$ в виде

$$\eta(t) = \eta(0) + \int_{0}^{t} \varphi(\tau) d\tau + \int_{0}^{t} f(\tau) dw(\tau)$$

для некоторых подходящих случайных функций $\varphi(\tau)$, $f(\tau)$. Тогда говорят, что $\eta(t)$ имеет стохастический дифференциал, а последнее соотношение записывают в дифференциальной форме

$$d\eta(t) = \varphi(t) dt + f(t) dw(t).$$

11.2. Стохастическое дифференциальное уравнение. Формула Ито. Введенное понятие стохастического интеграла Ито позволяет рассмотреть новый класс дифференциальных уравнений со случайной правой частью.

Пусть $\xi(t)\in\mathbb{R}^n, f(t,x)\in\mathbb{R}^n, \sigma(t,x)\in\mathbb{R}^{n\times m}$ — матричная функция размера $(n\times m),\ w(t)\in\mathbb{R}^m$ — m-мерный стандартный винеровский

процесс, компонентами которого являются независимые стандартные (скалярные) винеровские процессы, а $\nu \in \mathbb{R}^n$ — случайный вектор начальных условий.

Определение 11.6. Случайная функция $\xi(t)$ является решением стохастического дифференциального уравнения

$$d\xi(t) = f(t, \xi(t)) dt + \sigma(t, \xi(t)) dw(t)$$
(11.8)

на $\Delta = [0, T]$ с начальным условием

$$\xi(0) = \nu, \tag{11.9}$$

если ее можно представить для каждого $t \in [0, T]$ в виде

$$\xi(t) = \nu + \int_{0}^{t} f(\tau, \xi(\tau)) d\tau + \int_{0}^{t} \sigma(\tau, \xi(\tau)) dw(\tau), \qquad (11.10)$$

где в формуле (11.10) первый интеграл в правой части понимается в с.к.-смысле, а второй является интегралом Ито.

Замечание. Выражение (11.8) покомпонентно может быть пред-

$$\begin{cases} d\xi_k(t) = f_k(t, \xi(t)) dt + \sum_{i=1}^m \sigma_{ki}(t, \xi(t)) dw_i(t), \\ \xi_k(0) = \nu_k, & k = 1, \dots, n, \end{cases}$$
 (11.11)

где $\xi(t)=\{\xi_k(t)\}_{k=1}^n,\,f(t,x)=\{f_k(t,x)\}_{k=1}^n,\,\sigma(t,x)=\{\sigma_{ki}(t,x)\},\,k=1,\ldots,n,\,i=1,\ldots,m.$ Очевидно, (11.10) принимает вид

$$\xi_k(t) = \nu_k + \int_0^t f_k(\tau, \xi(\tau)) d\tau + \sum_{i=1}^m \int_0^t \sigma_{ki}(\tau, \xi(\tau)) dw_i(\tau).$$
 (11.12)

Для того чтобы все интегралы в правой части (11.12) имели смысл для некоторого процесса $\xi(t), t \in \Delta$, и для каждой компоненты этого процесса выполнялось бы при каждом $t \in \Delta$ равенство (11.12), на функции $\{f_k(t,x)\}, \{\sigma_{ki}(t,x)\}$ необходимо наложить некоторые огра-

Обозначим
$$|f(t,x)|^2 = \sum_{k=1}^n f_k^2(t,x)$$
, а $||\sigma(t,x)||^2 = \sum_{k=1}^n \sum_{i=1}^m \sigma_{ki}^2(t,x)$

Обозначим $|f(t,x)|^2 = \sum_{k=1}^n f_k^2(t,x)$, а $\|\sigma(t,x)\|^2 = \sum_{k=1}^n \sum_{i=1}^m \sigma_{ki}^2(t,x)$. Теорема 11.4. Пусть случайная величина ν не зависит от $\{w(t),\ t\in\Delta\}$, $\mathbf{M}\{|\nu|^2\}<\infty$, а коэффициенты уравнения (11.8) f(t,x) и $\sigma(t,x)$ непрерывны по переменным $t \in \Delta$, $x \in \mathbb{R}^n$. Пусть также:

а) найдется такое $K < \infty$, что при всех $t \in \Delta$, $x \in \mathbb{R}^n$

$$|f(t,x)|^2 + ||\sigma(t,x)||^2 \le K(1+|x|^2);$$
 (11.13)

б) найдется такое $C < \infty$, что при всех $t \in \Delta$, $x, y \in \mathbb{R}^n$

$$|f(t,x) - f(t,y)|^2 + ||\sigma(t,x) - \sigma(t,y)||^2 \leqslant C|x-y|^2.$$
(11.14)

Тогда на $\Delta = [0, T]$ существует и единственно (**P**-п.н.) непрерывное решение $\xi(t)$ уравнения (11.8) с начальным условием (11.9), причем

$$\mathbf{M}\{|\xi(t)|^2\} \leqslant L(1+\mathbf{M}\{|\nu|^2\}), \quad t \in \Delta,$$
 (11.15)

 $\it rde$ константа $\it L$ зависит лишь от $\it T$ и $\it K$.

Замечания. 1) Под единственностью (\mathbf{P} -n.н.) непрерывного решения понимается следующее: если найдется случайная функция $\eta(t)$ (почти все траектории которой непрерывны), удовлетворяющая уравнению (11.8), т. е.

$$d\eta(t) = f(t, \eta(t)) dt + \sigma(t, \eta(t)) dw(t), \qquad \eta(0) = \nu$$

то $\mathbf{P}\{\sup_{t\in\Delta}|\xi(t)-\eta(t)|>0\}=0$, т. е. $\xi(t)$ и $\eta(t)$ — неотличимые случайные процессы (см. п. 1.3).

- 2) Условие (11.13) накладывает ограничения на скорость изменения компонент функций f(t,x), $\sigma(t,x)$ по x при $|x| \to \infty$: |f(t,x)|, $\|\sigma(t,x)\|$ не могут возрастать быстрее, чем линейная функция. Условие (11.14), известное в математике как условие Липшица, ужесточает требование непрерывности по переменной x коэффициентов уравнения (11.8). Условия (11.14), (11.15) будут выполнены, например, если функции f(t,x), $\sigma(t,x)$ дифференцируемы по x, причем $|f'_x(t,x)|^2 + \|\sigma'_x(t,x)\|^2 \leqslant C$ при любых $t \in \Delta$, $x \in \mathbb{R}^n$ и некотором $C < \infty$. Условия теоремы 11.4 довольно жесткие, но относительно легко проверяемые. В принципе, они могут быть ослаблены, но соответствующие результаты выходят за рамки данной книги.
- 3) Процесс $\xi(t)$ при $\mathbf{M}\{|\nu|^2\} < \infty$ является процессом с конечными моментами второго порядка в силу (11.15). Более того, если $\mathbf{M}\{|\nu|^{2k}\} < \infty$ для $k \geqslant 1$, то найдется такая константа $L_k < \infty$, зависящая только от k, T и K, что для всех $t \in \Delta$

$$\mathbf{M}\{|\xi(t)|^{2k}\} \leqslant L_k(1+\mathbf{M}\{|\nu|^{2k}\}).$$

Другие свойства решения уравнения (11.8) будут описаны далее. Определение 11.7. Стохастическое дифференциальное уравнение вида

$$\begin{cases} d\xi(t) = a(t)\xi(t) dt + u(t) dt + b(t) dw(t), \\ \xi(0) = \nu, \end{cases}$$
 (11.16)

где a(t), u(t), b(t) — матричные детерминированные функции соответствующих размеров, называется линейным стохастическим дифференциальным уравнением.

Пример 11.3. Показать, что линейное дифференциальное уравнение (11.16) с непрерывными коэффициентами a(t), u(t) и b(t) имеет единственное решение на $\Delta = [0, T]$.

Решение. Сравнивая (11.16) с (11.8), находим

$$f(t,x) = a(t)x + u(t), \qquad \sigma(t,x) = b(t).$$

Проверим выполнение условий теоремы 11.4. а) Пусть $K^a_{ij} = \max_{t \in \Delta} |a_{ij}(t)|^2, \, K^u_i = \max_{t \in \Delta} |u_i(t)|^2$ и $K^b_{il} = \max_{t \in \Delta} |b_{il}(t)|^2,$ $i,j=1,\ldots,n,\, l=1,\ldots,m.$ Указанные максимумы существуют в силу непрерывности функций $a_{ij}(t),\, u_i(t)$ и $b_{il}(t)$ на Δ .

$$|f(t,x)|^2 = |a(t)x + u(t)|^2 \leqslant 2|a(t)x|^2 + 2|u(t)|^2 \leqslant 2K^a|x|^2 + 2K^u,$$

где $K^a=\sum_{i,j}K^a_{ij},~K^u=\sum_iK^u_i.$ Аналогично,

$$\|\sigma(t,x)\|^2 = \|b(t)\|^2 \leqslant K^b = \sum_{i,l} K^b_{il}.$$

Отсюда

$$|f(t,x)|^2 + ||\sigma(t,x)||^2 \le 2K^a|x|^2 + 2K^u + K^b \le K(1+|x|^2),$$

где $K = \max\{2K^a, 2K^u + K^b\}$. Таким образом, (11.13) выполнено. 6) $\|\sigma(t,x) - \sigma(t,y)\|^2 = \|b(t) - b(t)\|^2 = 0$,

$$|f(t,x) - f(t,y)|^2 = |a(t)(x-y)|^2 \leqslant K^a |x-y|^2, \quad \forall x, y \in \mathbb{R}^n$$

Отсюда условие (11.14) теоремы 11.4 выполнено при $C=K^a$.

Итак, все условия теоремы 11.4 выполнены, и, следовательно, уравнение (11.16) имеет единственное решение.

Предположим, что задана скалярная детерминированная функция $g(x,t), x \in \mathbb{R}^n, t \in \Delta$. Применим преобразование

$$\eta(t) = q(\xi(t), t) \tag{11.17}$$

к решению $\xi(t)$ уравнения (11.8). Процесс $\xi(t)$ по построению имеет стохастический дифференциал (см. п.11.1). Будет ли также и $\eta(t)$ иметь стохастический дифференциал? Ответ на этот вопрос дает следующая теорема.

 ${
m T}$ еорема 11.5. Пусть функция g(x,t) непрерывно дифференцируема на Δ по t, дважды непрерывно дифференцируема по x и выполнены условия теоремы 11.4, тогда

$$d\eta(t) = f_1(t, \xi(t)) dt + \sigma_1(t, \xi(t)) dw(t).$$
 (11.18)

Здесь

$$\begin{cases}
f_1(t,x) = \frac{\partial g(x,t)}{\partial t} + \left(\frac{\partial g(x,t)}{\partial x}\right)^* f(t,x) + \frac{1}{2} \operatorname{tr} \left[\frac{\partial^2 g(x,t)}{\partial^2 x} \sigma(t,x) \sigma^*(t,x)\right], \\
\sigma_1(t,x) = \left(\frac{\partial g(x,t)}{\partial x}\right)^* \sigma(t,x),
\end{cases} (11.19)$$

где $rac{\partial g(x,t)}{\partial x}$ — градиент функции g(x,t) по x, $\mathrm{tr}[\cdot]$ — след матрицы.

Формула (11.18) называется формулой стохастического дифференцирования Ито. Соотношения (11.18), (11.19) позволяют исследовать свойства различных нелинейных преобразований от решений стохастических дифференциальных уравнений.

Пример 11.4. Вывести формулу Ито для случая скалярного уравнения (11.8), т. е. n=m=1.

Решение. Подставляя в (11.19) выражения $\frac{\partial g(x,t)}{\partial x}=g_x'(x,t);$ $\frac{\partial^2 g(x,t)}{\partial^2 x}=g_x''(x,t);$ $\frac{\partial g(x,t)}{\partial t}=g_t'(x,t);$ $\sigma(t,x)\sigma^*(t,x)=\sigma^2(t,x),$ находим

$$\begin{cases}
f_1(t,x) = g'_t(x,t) + g'_x(x,t)f(t,x) + \frac{1}{2}g''_x(x,t)\sigma^2(t,x), \\
\sigma_1(t,x) = g'_x(x,t)\sigma(t,x).
\end{cases} (11.20)$$

Следовательно,

$$d\eta(t) = f_1(t, \xi(t)) dt + \sigma_1(t, \xi(t)) dw(t),$$

где коэффициенты f_1 , σ_1 определяются из (11.20).

Замечание. В заключение подчеркнем отличие правила дифференцирования Ито от правила обычного дифференцирования. Пусть $\xi(t)$ — дифференцируемая неслучайная функция, а $\eta(t)=g(\xi(t),t)$, тогда

$$d\eta(t) = g'_t(\xi(t), t) dt + g'_x(\xi(t), t) d\xi(t).$$

Если же $\xi(t)$ — случайная функция, удовлетворяющая стохастическому дифференциальному уравнению, то по (11.20)

$$d\eta(t) = [g'_t(\xi(t), t) dt + g'_x(\xi(t), t) d\xi(t)] + \frac{1}{2}g''_x(\xi(t), t)\sigma^2(t, \xi(t)) dt.$$

Если последний член в формуле Ито отсутствует, то оба правила дифференцирования совпадают. Это будет иметь место, например, в случае $g_x''(\xi(t),t)=0$, т. е. если $g(x,t)=a(t)\,x$ — линейное преобразование. Очевидно также, что отсутствие диффузионного члена в уравнении (11.8), т. е. $\sigma(t,x)=0$, приводит к аналогичному результату.

Приведем несколько примеров, показывающих эффективность использования формулы Ито в стохастическом анализе.

Пример 11.5. Используя формулу Ито, доказать, что

$$\int_{0}^{t} w(\tau) dw(\tau) = \frac{1}{2} [w^{2}(t) - t], \quad t > 0.$$

Решение. Пусть $\xi(t)=w(t)$, тогда $d\xi(t)=dw(t)$, $\xi(0)=0$, т. е. $\xi(t)$ удовлетворяет стохастическому дифференциальному уравнению, в котором f(t,x)=0, $\sigma(t,x)=1$. Рассмотрим преобразование $\eta(t)=\xi^2(t)$, т. е. $g(x,t)=x^2$. Тогда $g_t'(x,t)=0$, $g_x'(x,t)=2x$, $g_x''(x,t)=2$. Подставим найденные выражения в (11.20):

$$f_1(t,x) = 1,$$
 $\sigma_1(t,x) = 2x.$

Отсюда $d\eta(t)=dt+2\xi(t)\,dw(t),$ причем $\eta(0)=\xi^2(0)=0.$ Переходя к интегральной записи (11.10), получаем

$$\eta(t)-\eta(0)=\int\limits_0^t d au+2\int\limits_0^t \xi(au)\,dw(au),$$

откуда с учетом $\xi(\tau)=w(\tau)$ и $\eta(t)=w^2(t)$ следует

$$w^{2}(t) = t + 2 \int_{0}^{t} w(\tau) dw(\tau) = t + 2I(w),$$

что и требовалось доказать.

Заметим, что результат примера 11.5 согласуется с формулой (11.6), полученной в примере 11.2 непосредственным вычислением интеграла I(w).

Пример 11.6. Решить стохастическое дифференциальное уравнение:

$$\begin{cases} d\xi(t) = \frac{1}{2} \xi(t) dt + \xi(t) dw(t), \\ \xi(0) = 1. \end{cases}$$
 (11.21)

Решение. Уравнение (11.21) имеет решение в силу теоремы 11.4. Рассмотрим функцию $\xi(t)=e^{w(t)}$, т. е. $\xi(t)=g(w(t),t)$, где $g(x,t)=e^x$. Очевидно, что $g_t'(x,t)=0$, $g_x'(x,t)=g_x''(x,t)=e^x$. Применим правило дифференцирования Ито:

$$d\xi(t) = \frac{1}{2}g_x''(w(t), t) dt + g_x'(w(t), t) dw(t).$$

Отсюда $d\xi(t) = \frac{1}{2}\,\xi(t)\,dt + \xi(t)\,dw(t)$, так как

$$g'_x(w(t), t) = g''_x(w(t), t) = e^{w(t)} = \xi(t).$$

Кроме того, $\xi(0) = e^{w(0)} = 1$, так как w(0) = 0. Таким образом, $\xi(t) = e^{w(t)}$ является решением уравнения (11.21).

Заметим также, что модель (11.21) удовлетворяет всем условиям теоремы 11.4, поэтому мы можем утверждать, что полученное решение — единственное, а также для всех $k\geqslant 1$

$$\mathbf{M}\left\{|\xi(t)|^{2k}\right\} = \mathbf{M}\left\{e^{2kw(t)}\right\} < \infty, \quad t \in \Delta. \quad \blacksquare$$

 Π ример 11.7. Пусть $\xi(t)$ — решение уравнения

$$d\xi(t) = \cos \xi(t) dt + \cos \xi(t) dw(t), \qquad \xi(0) = 0$$

Показать, что $\eta(t)=\sin\xi(t)$ также является решением некоторого нелинейного стохастического дифференциального уравнения.

Решение. По условию $g(x,t)=\sin x$, поэтому $g'_t(x,t)=0$, $g'_x(x,t)=\cos x$, $g''_x(x,t)=-\sin x$. По условию также $f(t,x)=\sigma(t,x)=\cos x$. Воспользуемся формулами (11.18), (11.19):

$$f_1(t,x) = \cos^2 x - \frac{1}{2}\sin x \cos^2 x = \cos^2 x (1 - \frac{1}{2}\sin x),$$

$$\sigma_1(t, x) = \cos^2 x = 1 - \sin^2 x.$$

Учитывая, что $\sin \xi(t) = \eta(t)$, получаем

$$\begin{cases} d\eta(t) = (1 - \eta^2(t))(1 - \frac{1}{2}\eta(t)) dt + (1 - \eta^2(t)) dw(t), \\ \eta(0) = \sin \xi(0) = 0. \end{cases}$$
 (11.22)

Таким образом, $\eta(t) = \sin \xi(t)$ является решением (11.22). Отметим, что уравнение (11.22) не удовлетворяет условиям существования и единственности решения, использованным в теореме 11.4. Тем не менее это решение существует, и мы явным образом это проверили. Данный результат не является противоречием, а указывает лишь на то, что условия теоремы 11.4 являются достаточными для разрешимости нелинейного стохастического дифференциального уравнения, но не необходимыми.

Следующий пример показывает, как формула Ито может быть использована для вычисления моментных характеристик решения $\xi(t)$ уравнения (11.8).

Пример 11.8. Предположим, что $\xi(t)$ является решением уравнения

$$d\xi(t) = a\xi(t) \, dt + b\xi(t) \, dw(t), \qquad \xi(0) = \nu, \tag{11.23}$$

причем $\mathbf{M}\!\left\{ \nu^4 \right\} < \infty$. Вычислить $\gamma(t) = \mathbf{M}\!\left\{ \xi^2(t) \right\}$.

Решение. Пусть $g(x,t)=x^2$, тогда по формуле Ито получаем уравнение для $\eta(t)=\xi^2(t)$:

$$d\eta(t) = (2a + b^2)\eta(t) dt + 2b\eta(t) dw(t). \tag{11.24}$$

В силу $\mathbf{M}\big\{\eta^2(0)\big\} = \mathbf{M}\big\{\nu^4\big\} < \infty$ из неравенства (11.15) следует,

что
$$\mathbf{M}ig\{\eta^2(t)ig\}<\infty$$
, поэтому $\mathbf{M}ig\{\int\limits_0^t\eta(\tau)\,dw(\tau)ig\}=0$. Отсюда, интегри-

руя (11.24) и вычисляя математическое ожидание от обеих частей, получаем

$$\mathbf{M}\{\eta(t)\} = \mathbf{M}\{\eta(0)\} + (2a + b^2) \int_{0}^{t} \mathbf{M}\{\eta(\tau)\} d\tau.$$

С учетом того, что $\mathbf{M}\{\eta(t)\} = \gamma(t)$, имеем

$$\gamma(t) = \gamma(0) + (2a + b^2) \int_{0}^{t} \gamma(\tau) d\tau.$$

Дифференцируя полученное соотношение по t, находим

$$\dot{\gamma}(t) = (2a + b^2)\gamma(t),$$

т. е.
$$\gamma(t) = \gamma(0) \exp\{(2a + b^2)t\}$$
, где $\gamma(0) = \mathbf{M}\{\xi^2(0)\} = \mathbf{M}\{\nu^2\}$.

Заметим, что если $2a+b^2<0$, то $\gamma(t)\to 0$ при $t\to\infty$ для любого конечного $\gamma(0)$. Последнее, в свою очередь, означает, что $\xi(t) \xrightarrow{\text{с.к.}} 0$ при $t\to\infty$ для любого ν , такого, что $\mathbf{M}\left\{\nu^4\right\}<\infty$. Указанное свойство уравнения (11.23) называется его $cmoxacmuvecko\ddot{u}$ асимптотической устойчивостью в с.к.-смысле.

Для численного моделирования процесса $\xi(t)$, заданного нелинейным стохастическим дифференциальным уравнением (11.8), можно воспользоваться методом Эйлера. Для этого рассмотрим точки $0=t_0< t_1< t_2< \ldots$, в которых требуется вычислить значения процесса $\xi(t)$. Теперь заменим в (11.8) дифференциалы на приращения: $d\xi(t)$ на $\xi(t_{n+1})-\xi(t_n)$, dt на $t_{n+1}-t_n$ и dw(t) на $w(t_{n+1})-w(t_n)$. Тогда

$$\xi(t_{n+1}) = [\xi(t_n) + h f(\xi(t_n))] + \sigma(t_n, \xi(t_n)) (w(t_{n+1}) - w(t_n)),$$

где $n=0,1,\ldots$, а $h=t_{n+1}-t_n={\rm const}$ — шаг дискретизации $(0< h\ll 1)$. Так как последовательные приращения $w(t_{n+1})-w(t_n)$ m-мерного винеровского процесса независимы и имеют распределение $\mathcal{N}(0;hI)$, окончательно получаем

$$\xi(t_{n+1}) = [\xi(t_n) + h f(\xi(t_n))] + \sqrt{h}\sigma(t_n, \xi(t_n)) v_n, \quad n = 0, 1, \dots,$$

где $\{v_n\}$ — стандартный m-мерный гауссовский белый шум.

11.3. Линейные стохастические дифференциальные уравнения. Рассмотрим подробнее процесс $\xi(t)$, удовлетворяющий линейному стохастическому дифференциальному уравнению

$$\begin{cases} d\xi(t) = a(t)\xi(t) dt + u(t) dt + b(t) dw(t), \\ \xi(0) = \nu \end{cases}$$
 (11.25)

с непрерывными коэффициентами a(t), u(t), b(t).

В примере 11.3 было показано, что это уравнение имеет единственное решение. Найдем это решение явно.

Пример 11.9. Показать, что процесс

$$\xi(t) = \Theta(t)\nu + \Theta(t) \int_{0}^{t} \Theta^{-1}(\tau)u(\tau) d\tau + \Theta(t) \int_{0}^{t} \Theta^{-1}(\tau)b(\tau) dw(\tau) \quad (11.26)$$

является решением уравнения (11.25), если матричная функция $\Theta(t)$ удовлетворяет системе дифференциальных уравнений

$$\begin{cases} \dot{\Theta}(t) = a(t)\Theta(t), \\ \Theta(0) = I. \end{cases}$$
 (11.27)

Решение. Вычислим дифференциалы слагаемых в правой части выражения для $\xi(t)$, используя правило с.к.-дифференцирования и формулу Ито:

$$\begin{split} d(\Theta(t)\nu) &= \dot{\Theta}(t)\nu\,dt, \\ d\Big(\Theta(t)\int\limits_0^t \Theta^{-1}(\tau)u(\tau)\,d\tau\Big) &= \Big[\dot{\Theta}(t)\int\limits_0^t \Theta^{-1}(\tau)u(\tau)\,d\tau + u(t)\Big]dt, \\ d\Big(\Theta(t)\int\limits_0^t \Theta^{-1}(\tau)b(\tau)\,dw(\tau)\Big) &= \dot{\Theta}(t)\int\limits_0^t \Theta^{-1}(\tau)b(\tau)\,dw(\tau) + b(t)\,dw(t). \end{split}$$

В последнем равенстве учтено, что для $\eta(t)=\int\limits_0^t\Theta^{-1}(\tau)b(\tau)\,dw(\tau)$ по определению справедливо $d\eta(t)=\Theta^{-1}(t)b(t)\,dw(t)$, а по правилу Ито в силу линейности преобразования $g(\eta(t),t)=\Theta(t)\eta(t)$ имеет место

$$d(\Theta(t)\eta(t)) = \dot{\Theta}(t)\eta(t) dt + \Theta(t) d\eta(t).$$

15 Б.М. Миллер и А.Р. Панков

Итак, окончательно получаем

$$\begin{split} d\xi(t) &= \dot{\Theta}(t) \left[\nu + \int\limits_0^t \Theta^{-1}(\tau) u(\tau) \, d\tau \, + \\ &\quad + \int\limits_0^t \Theta^{-1}(\tau) b(\tau) \, dw(\tau) \right] dt + u(t) \, dt + b(t) \, dw(t). \end{split}$$

С учетом $\dot{\Theta}(t) = a(t)\Theta(t)$ и формулы (11.26) имеем

$$d\xi(t) = a(t)\xi(t) dt + u(t) dt + b(t) dw(t),$$

причем начальное условие $\xi(0) = \Theta(0)\nu = \nu$ выполнено, поскольку $\Theta(0) = I$. Таким образом, (11.26) действительно является решением уравнения (11.25). Свойства матрицы $\Theta(t)$ фундаментальных решений (11.27) обсуждались ранее в п. 8.3, поэтому мы считаем их известными.

З а м е ча н и е. Можно показать, что решение (11.26) остается справедливым, если вместо непрерывности a(t), u(t) и b(t) предположить их кусочную непрерывность.

В следующем примере обоснован практически важный метод вычисления моментных характеристик первого и второго порядков решения системы линейных стохастических дифференциальных уравнений — метод моментов.

Пример 11.10. Пусть процесс $\xi(t)$, удовлетворяющий (11.25), в момент $t \in \Delta$ имеет среднее $m_{\xi}(t) = \mathbf{M}\{\xi(t)\}$ и ковариационную матрицу $\gamma_{\xi}(t) = \mathbf{cov}\{\xi(t), \xi(t)\} = \mathbf{M}\{(\xi(t) - m_{\xi}(t))(\xi(t) - m_{\xi}(t))^*\}$, а начальное значение $\xi(0) = \nu$ не зависит от $\{w(t)\}$. Показать, что $m_{\xi}(t)$, $\gamma_{\xi}(t)$ являются решениями следующих систем обыкновенных дифференциальных уравнений:

$$\dot{m}_{\varepsilon}(t) = a(t)m_{\varepsilon}(t) + u(t), \qquad m_{\varepsilon}(0) = m_{\nu}, \qquad (11.28)$$

$$\dot{\gamma}_{\xi}(t) = a(t)\gamma_{\xi}(t) + \gamma_{\xi}(t)a^{*}(t) + b(t)b^{*}(t), \qquad \gamma_{\xi}(0) = \gamma_{\nu}, \qquad (11.29)$$

где $m_{\nu} = \mathbf{M}\{\nu\}, \, \gamma_{\nu} = \mathbf{cov}\{\nu, \nu\}.$

Решение. Воспользуемся формулой (11.26), дающей явный вид решения $\xi(t)$:

$$m_{\xi}(t) = \mathbf{M}\{\xi(t)\} = \Theta(t)m_{\nu} + \Theta(t) \int_{0}^{t} \Theta^{-1}(\tau)u(\tau) d\tau,$$
 (11.30)

так как $\mathbf{M} \left\{ \int\limits_0^t \Theta^{-1}(\tau) b(\tau) \, dw(\tau) \right\} = 0$ по теореме 11.2. Дифференцирование выражения (11.30) по t дает уравнение (11.28).

Вычитая (11.28) из (11.26), получаем для $\overset{\circ}{\xi}(t) = \xi(t) - m_{\xi}(t)$

$$\mathring{\xi}(t) = \Theta(t) \left[\mathring{\nu} + \int_{0}^{t} \Theta^{-1}(\tau)b(\tau) dw(\tau) \right]. \tag{11.31}$$

Пусть $\eta(t)=\int\limits_0^t\Theta^{-1}(\tau)b(\tau)\,dw(\tau),$ тогда по свойству стохастического интеграла от неслучайной функции имеем

$$\mathbf{cov}\{\eta(t),\eta(t)\} = \int_{0}^{t} \Theta^{-1}(\tau)b(\tau)b^{*}(\tau) \left(\Theta^{-1}(\tau)\right)^{*} d\tau.$$

Учитывая независимость ν от $\{w(\tau), \tau \geqslant 0\}$, получаем

$$\gamma_{\xi}(t) = \mathbf{M} \big\{ \xi(t) \overset{\circ}{\xi}^{*}(t) \big\} = \Theta(t) \Big[\gamma_{\nu} + \int_{0}^{t} \Theta^{-1}(\tau) b(\tau) b^{*}(\tau) \big(\Theta^{-1}(\tau) \big)^{*} d\tau \Big] \Theta^{*}(t).$$

Дифференцирование последнего выражения по t приводит к системе уравнений (11.29). Выполнение начальных условий проверяется непосредственной подстановкой t=0 в выражения для $m_{\xi}(t)$ и $\gamma_{\xi}(t)$.

Уравнения (11.28), (11.29) для вычисления моментных характеристик $m_{\xi}(t)$ и $\gamma_{\xi}(t)$ процесса $\xi(t)$ называются уравнениями метода моментов.

Рассмотрим использование полученных соотношений на примере скалярного линейного стохастического дифференциального уравнения с постоянными коэффициентами.

Пример 11.11. Пусть скалярная случайная функция $\{\xi(t), t \geqslant 0\}$ удовлетворяет уравнению

$$d\xi(t) = a\xi(t) dt + b dw(t), \qquad \xi(0) = \nu.$$

Найти общее решение уравнения и вычислить $m_{\xi}(t)$ и $\gamma_{\xi}(t)$ с помощью метода моментов. Рассмотреть поведение этих характеристик при $t \to \infty$, если a < 0.

Решение. Нетрудно проверить, что в данном случае $\Theta(t) = e^{at}$, поэтому

$$\xi(t) = e^{at} m_{\nu} + b e^{at} \int_{0}^{t} e^{-a\tau} dw(\tau)$$

представляет собой общее решение рассматриваемого уравнения. Для нахождения $m_{\xi}(t)$ и $\gamma_{\xi}(t)$ применим метод моментов. Из (11.28) следует

$$\dot{m}_{\xi}(t) = a m_{\xi}(t), \qquad m_{\xi}(0) = m_{\nu}.$$

Отсюда $m_{\xi}(t) = m_{\nu}e^{at}$. Аналогично из (11.29) находим

$$\dot{\gamma}_{\xi}(t) = 2a\gamma_{\xi}(t) + b^2, \qquad \gamma_{\xi}(0) = \gamma_{\nu}.$$

Решая последнее уравнение с учетом |a| = -a, получаем

$$\gamma_{\xi}(t) = e^{2at}\gamma_{\nu} + \frac{b^2}{2|a|} (1 - e^{2at}).$$

Так как a<0, то $e^{at}\to 0$ при $t\to\infty$, поэтому $m_\xi(t)\to 0,\ \gamma_\xi(t)\to \frac{b^2}{2|a|}$ для любых $m_\nu,\ \gamma_\nu.$

Определение 11.8. Система дифференциальных уравнений

$$d\xi(t) = a\xi(t) dt + u dt + b dw(t), \qquad \xi(0) = \nu$$
 (11.32)

с постоянными коэффициентами a, u, b называется асимптотически устойчивой, если все корни $\{\lambda_k\}$ уравнения

$$\det[a - \lambda I] = 0 \tag{11.33}$$

лежат в левой полуплоскости, т. е. $\operatorname{Re} \lambda_k < 0$.

Теорема 11.6. Если система (11.32) асимптотически устойчива, то существуют m_ξ и γ_ξ , такие, что для всех m_ν , γ_ν

$$m_{\xi}(t) \to m_{\xi} \quad u \quad \gamma_{\xi}(t) \to \gamma_{\xi} \quad npu \quad t \to \infty.$$

Предельные значения $m_{\xi},\,\gamma_{\xi}$ удовлетворяют стационарным уравнениям метода моментов:

$$\begin{cases} a m_{\xi} + u = 0, \\ a \gamma_{\xi} + \gamma_{\xi} a^* + b b^* = 0. \end{cases}$$
 (11.34)

Пример 11.12. Двумерный процесс $\xi(t)=\{\xi_1(t),\xi_2(t)\}^*$ удовлетворяет системе уравнений

$$\begin{cases} d\xi_1(t) = \xi_2(t) dt + \delta dt, \\ d\xi_2(t) = -\omega^2 \xi_1(t) dt - 2\alpha \omega \xi_2(t) dt + g dw(t), \end{cases}$$

где α , δ , ω и g — постоянные параметры.

Найти предельные значения m_1, γ_1 моментов первого и второго порядков компоненты $\xi_1(t),$ если $\alpha\omega>0.$

Решение. Из (11.32) следует, что

$$a = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\alpha\omega \end{bmatrix}, \qquad u = \begin{bmatrix} \delta \\ 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ g \end{bmatrix}.$$

Проверим условия асимптотической устойчивости:

$$\det[a - \lambda I] = \det \begin{bmatrix} -\lambda & 1 \\ -\omega^2 & -2\alpha\omega - \lambda \end{bmatrix} = \lambda^2 + 2\alpha\omega\lambda + \omega^2 = 0.$$

Корни $\lambda_{1,2} = -\alpha\omega \pm \sqrt{\alpha^2\omega^2 - \omega^2}$ лежат в левой полуплоскости, так как $\alpha\omega > 0$ по условию. Следовательно, наша система (11.32) асимптотически устойчива. Тогда из теоремы 11.6

$$\begin{cases} m_2 + \delta = 0, \\ -\omega^2 m_1 - 2\alpha\omega m_2 = 0, \end{cases}$$

откуда $m_1=2\alpha\delta/\omega$. Так как $\gamma_\xi=\gamma_\xi^*$ по определению, мы можем положить $\gamma_\xi=\begin{bmatrix} \gamma_1 & k \\ k & \gamma_2 \end{bmatrix}$. Тогда из (11.34) следует

$$\left[\begin{array}{cc} 0 & 1 \\ -\omega^2 & -2\alpha\omega \end{array}\right] \left[\begin{array}{cc} \gamma_1 & k \\ k & \gamma_2 \end{array}\right] + \left[\begin{array}{cc} \gamma_1 & k \\ k & \gamma_2 \end{array}\right] \left[\begin{array}{cc} 0 & -\omega^2 \\ 1 & -2\alpha\omega \end{array}\right] + \left[\begin{array}{cc} 0 & 0 \\ 0 & g^2 \end{array}\right] = 0.$$

Данное матричное уравнение можно переписать в скалярном виде:

$$\begin{cases}
2k = 0, \\
-\omega^2 \gamma_1 + \gamma_2 - 2\alpha \omega k = 0, \\
-4\alpha \omega \gamma_2 - 2k\omega^2 + g^2 = 0.
\end{cases}$$
(11.35)

Разрешая (11.35) относительно γ_1 , находим $\gamma_1 = g^2/(4\alpha\omega^3)$. Итак, при достаточно больших t можно считать, что $\xi_1(t)$ имеет постоянные среднее $\mathbf{M}\{\xi_1(t)\} = 2\alpha\delta/\omega$ и дисперсию $\mathbf{D}\{\xi_1(t)\} = g^2/(4\alpha\omega^3)$.

Если процесс $\xi(t)$ удовлетворяет системе линейных стохастических дифференциальных уравнений (11.25), то мы можем найти закон его одномерного распределения при известном законе распределения начального условия ν .

Пусть $\Psi_0(\lambda) = \mathbf{M}\{\exp(i\lambda^*\nu)\}, \quad \lambda \in \mathbb{R}^n, \quad - \text{ характеристическая функция случайного вектора } \nu, \ \mathbf{a} \ \Psi_{\xi}(\lambda; t) = \mathbf{M}\{\exp(i\lambda^*\xi(t))\} - \mathbf{xарактеристическая функция сечения процесса } \xi(t), t \geq 0.$

T е о р е м а 11.7. Если $\xi(t)$ удовлетворяет системе линейных стохастических дифференциальных уравнений (11.25), то характеристическая функция $\Psi_{\xi}(\lambda;t)$ имеет вид

$$\Psi_{\xi}(\lambda; t) = \Psi_{0}(\Theta^{*}(t)\lambda) \exp\left\{i\lambda^{*}m_{\xi}^{0}(t) - \frac{1}{2}\lambda^{*}\gamma_{\xi}^{0}(t)\lambda\right\}, \tag{11.36}$$

где $\Theta(t)$ удовлетворяет (11.27), а $\{m_{\xi}^0(t), \gamma_{\xi}^0(t)\}$ — решения системы дифференциальных уравнений метода моментов (11.28), (11.29) с нулевыми начальными условиями.

Пример 11.13. В условиях примера 11.11 найти характеристическую функцию $\Psi_{\xi}(\lambda;t)$, если начальное значение ν имеет равномерное распределение на $[-\alpha,\alpha],\ \alpha>0$.

Решение. Так как $\xi(t)$ — скалярная функция, то $\lambda \in \mathbb{R}^1$. Вычислим необходимые компоненты формулы (11.36):

1)
$$\Psi_0(\lambda) = \mathbf{M}\{\exp(i\lambda\nu)\} = \frac{1}{2\alpha} \int_{-\infty}^{\infty} e^{i\lambda x} dx = \frac{\sin\alpha\lambda}{\alpha\lambda};$$

2) $\Theta(t) = e^{at}$ (см. решение примера 11.11);

3)
$$\dot{m}^0_\xi(t)=am^0_\xi(t),\, m^0_\xi(0)=m_\nu=0,$$
 откуда $m^0_\xi(t)\equiv 0;$

4)
$$\dot{\gamma}_{\xi}^{0}(t) = 2a\gamma_{\xi}^{0}(t) + b^{2}, \, \gamma_{\xi}^{0}(0) = 0, \, \text{поэтому } \gamma_{\xi}^{0}(t) = \frac{b^{2}}{2|a|} \left(1 - e^{2at}\right);$$

5) находим $\Psi_{\xi}(\lambda; t)$ по формуле (11.36):

$$\Psi_{\xi}(\lambda; t) = \frac{e^{-at} \sin\left(\alpha \lambda e^{at}\right)}{\alpha \lambda} \exp\left\{-\frac{\lambda^2 b^2}{4|a|} \left(1 - e^{2at}\right)\right\}.$$

Заметим, что $\Psi_{\xi}(\lambda;0) = \frac{\sin \alpha \lambda}{\alpha \lambda} = \Psi_0(\lambda)$. Если же $t \to \infty$, а параметр a < 0 (т. е. уравнение асимптотически устойчиво), то

$$\Psi_{\xi}(\lambda;\,t) \to \exp\left\{-\frac{1}{2}\lambda^2 \frac{b^2}{2|a|}\right\} = \Psi_N(\lambda),$$

где $\Psi_N(\lambda)$ — характеристическая функция гауссовского распределения $\mathcal{N}(0;b^2/2|a|)$. Таким образом, при a<0 и достаточно больших t можно считать, что $\xi(t)$ имеет гауссовское распределение. Естественно, при близких к нулю t точное распределение $\Psi_{\xi}(\lambda;t)$ не является гауссовским.

Замечание. Из теоремы 11.7 следует, что если начальное распределение $\Psi_0(\lambda)$ — гауссовское, то для любого $t\geqslant 0$ случайный вектор $\xi(t)$ имеет гауссовское распределение $\mathcal{N}(m_\xi(t);\gamma_\xi(t))$, где параметры $m_\xi(t),\,\gamma_\xi(t)$ — решения уравнения метода моментов. Если же ν не является гауссовским вектором, но система уравнений такова, что $\Theta(t)\to 0$ при $t\to\infty$ (условие acumnmomuческой устойчивости для нестационарных систем), то при $t\gg 1$ можно считать, что $\xi(t)\sim \mathcal{N}(m_\xi^0(t);\gamma_\xi^0(t))$, т. е. имеет место асимптотическая нормальность решения устойчивого линейного стохастического дифференциального уравнения.

В заключение рассмотрим решение линейного стохастического дифференциального уравнения, порожденного не винеровским процессом w(t), а центрированным неоднородным пуассоновским процессом

$$\mathring{\eta}(t) = \eta(t) - m_{\eta}(t),$$

где $\eta(t)$ — пуассоновский процесс интенсивности $\nu(t)>0,$ а $m_{\eta}(t)=\int\limits_{0}^{t}\nu(\tau)\,d\tau$:

$$\begin{cases} d\xi(t) = a(t)\xi(t) dt + u(t) dt + b(t) d\mathring{\eta}(t), \\ \xi(0) = \nu. \end{cases}$$
 (11.37)

В интегральной форме уравнение (11.37) имеет вид

$$\xi(t) = \nu + \int_{0}^{t} a(\tau)\xi(\tau) d\tau + \int_{0}^{t} u(\tau) d\tau + \int_{0}^{t} b(\tau) d\mathring{\eta}(t), \tag{11.38}$$

где последний интеграл в (11.38) — стохастический интеграл по пуассоновской мере (см. п. 10.2). Используя формулу интегрирования по частям (8.11) для с.к.-интеграла и (10.12) — для стохастического интеграла по процессу с ортогональными приращениями, можно по-казать, что формула (11.26) (с заменой $w(\tau)$ на $\mathring{\eta}(\tau)$) остается в силе:

$$\xi(t) = \Theta(t)\nu + \Theta(t) \int_{0}^{t} \Theta^{-1}(\tau)u(\tau) d\tau + \Theta(t) \int_{0}^{t} \Theta^{-1}(\tau)b(\tau) d\mathring{\eta}(\tau). \quad (11.39)$$

Теперь, используя формулу (10.19) для вычисления интеграла от неслучайной функции, окончательно получаем

$$\xi(t) = \Theta(t)\nu + \Theta(t) \left\{ \int_{0}^{t} \Theta^{-1}(\tau) (u(\tau) - b(\tau)\nu(\tau)) d\tau + \sum_{\tau_k \leqslant t} \Theta^{-1}(\tau_k)b(\tau_k) \right\}.$$

где $\{\tau_k\}$ — случайные моменты скачков процесса $\eta(t)$.

11.4. Формирующий фильтр для стационарной случайной функции. В данном пункте мы рассмотрим метод моделирования стационарной случайной функции с дробно-рациональной спектральной плотностью с помощью стохастических дифференциальных уравнений — метод формирующих фильтров.

Определение 11.9. Гауссовская стационарная случайная функция $\{\xi(t),\ t\in\mathbb{R}^1\}$ имеет дробно-рациональную спектральную плотность $f_\xi(\lambda)$ в случае, если

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \cdot \frac{|H(i\lambda)|^2}{|F(i\lambda)|^2},\tag{11.40}$$

где

$$F(x) = \sum_{k=0}^{n} a_k x^k, \quad a_n = 1, \qquad H(x) = \sum_{k=0}^{m} b_k x^k, \qquad m \leqslant n - 1,$$

причем корни многочленов F(x) и H(x) лежат в левой полуплоскости. Замечание. При выполнении указанных выше предположений функция $f_{\xi}(\lambda)$ интегрируема на \mathbb{R}^1 , т.е.

$$D_{\xi} = \mathbf{D}\{\xi(t)\} = \int_{-\infty}^{\infty} f_{\xi}(\lambda) \, d\lambda < \infty.$$

Далее всюду предполагаем, что $\{\xi(t),\ t\in\mathbb{R}^1\}$ — вещественный стационарный центрированный гауссовский случайный процесс с дробно-рациональной спектральной плотностью $f_{\xi}(\lambda)$ вида (11.40) и ковариационной функцией

$$R_{\xi}(\tau) = \int_{-\infty}^{\infty} e^{i\lambda\tau} f_{\xi}(\lambda) d\lambda. \tag{11.41}$$

Рассмотрим систему из n линейных стохастических дифференциальных уравнений для процесса $\eta(t)=\{\eta_1(t),\ldots,\eta_n(t)\}^*$, такого, что $\eta_1(t)=\xi(t)$. Структура этой системы описана в следующей теореме.

T е о р е м а 11.8. Пусть $\eta(t)$ удовлетворяет системе из n линейных стохастических дифференциальных уравнений

$$d\eta(t) = A\eta(t) dt + B dw(t), \qquad \eta(0) = \nu.$$
 (11.42)

 $3 decb \ w(t) - c \kappa a \Lambda s p h b \ddot{u} \ c m a h d a p m h b \ddot{u} \ b u h e p o b c \kappa u \ddot{u} \ n p o u e c c$

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ \dots \\ 0 \\ q_{n-m} \\ q_{n-m+1} \\ \dots \\ q_n \end{bmatrix},$$

 $\{a_0,\,\dots,a_{n-1}\}$ — коэффициенты многочлена F(x), а параметры $\{q_{n-m},\,\dots,q_n\}$ определяются по рекуррентным формулам:

$$q_{n-m} = b_m,$$
 $q_k = b_{n-k} - \sum_{i=n-m}^{k-1} a_{n-k+i} q_i,$ $k = n-m+1, \dots, n,$

 $\{b_0,\,\ldots,b_m\}$ — коэффициенты многочлена H(x).

Если случайный вектор ν не зависит от $\{w(t), t \geq 0\}$ и имеет распределение $\mathcal{N}(0; R_{\nu})$, где ковариационная матрица R_{ν} удовлетворяет системе алгебраических уравнений

$$AR_{\nu} + R_{\nu}A^* + BB^* = 0, \tag{11.43}$$

то компонента $\eta_1(t)$ вектора $\eta(t)$ является стационарным гауссовским центрированным случайным процессом со спектральной плотностью

$$f_{\eta_1}(\lambda) = f_{\xi}(\lambda) = \frac{1}{2\pi} \cdot \frac{|H(i\lambda)|^2}{|F(i\lambda)|^2}.$$

Замечания. 1) Так как спектральная плотность гауссовского центрированного процесса однозначно определяет его конечномерные распределения, процессы $\eta_1(t)$ и $\xi(t)$ стохастически эквивалентны в широком смысле (см. п. 1.1).

- 2) Обычно многочлен F(x), все корни которого лежат в левой полуплоскости, называют устойчивым многочленом. Можно показать, что из устойчивости F(x) следует асимптотическая устойчивость системы (11.42), поэтому $\Theta(t) \to 0$ при $t \to \infty$, где $\Theta(t)$ матричная функция Коши, удовлетворяющая уравнению $\dot{\Theta}(t) = A\Theta(t)$, $\Theta(0) = I$, следующему из (11.27).
- 3) Решение системы уравнений (11.43) процесс трудоемкий, но не имеющий большого практического значения. Действительно, пусть $\widetilde{\eta}(t)$ удовлетворяет системе уравнений

$$d\widetilde{\eta}(t) = A\widetilde{\eta}(t) dt + B dw(t), \qquad \widetilde{\eta}(0) = 0. \tag{11.44}$$

Тогда из результатов примера 11.9 следует, что

$$\eta(t) - \widetilde{\eta}(t) = \Theta(t) \nu \xrightarrow{\text{п.н.}} 0$$
 при $t \to \infty$

в силу предыдущего замечания. Это означает, что по истечении некоторого времени процессы $\eta(t)$ и $\widetilde{\eta}(t)$ практически не различаются, причем различие тем меньше, чем больше времени прошло с начала решения уравнения (11.42).

Определение 11.10. Система стохастических дифференциальных уравнений (11.42) (а также (11.44)) называется формирующим фильтром для процесса $\xi(t)$ с дробно-рациональной спектральной плотностью $f_{\xi}(\lambda)$ вида (11.40) или ковариационной функцией $R_{\xi}(\tau)$ вида (11.41).

Рассмотрим использование описанных результатов на конкретных примерах.

Пример 11.14. Построить формирующий фильтр для процесса $\xi(t)$, имеющего ковариационную функцию $R_{\xi}(\tau) = De^{-\alpha|\tau|}$, где D > 0, $\alpha > 0$.

Решение.

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\lambda\tau} R_{\xi}(\tau) d\tau = \frac{D}{2\pi} \int_{-\infty}^{\infty} e^{-(\alpha|\tau| + i\lambda\tau)} d\tau = \frac{D\alpha}{\pi(\alpha^2 + \lambda^2)}.$$

Найденную спектральную плотность можно представить в виде

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \cdot \frac{\sqrt{2D\alpha} \cdot \sqrt{2D\alpha}}{(\alpha + i\lambda)(\alpha - i\lambda)} = \frac{1}{2\pi} \cdot \frac{|H(i\lambda)|^2}{|F(i\lambda)|^2},$$

где $H(x) = \sqrt{2D\alpha}$, $F(x) = \alpha + x$. Тогда $b_0 = \sqrt{2D\alpha}$, $a_0 = \alpha$, $a_1 = 1$. Заметим, что многочлен F(x) устойчив в силу $\alpha > 0$. Теперь, используя утверждение теоремы 11.8, находим уравнение фильтра:

$$d\xi(t) = -\alpha \xi(t) dt + \sqrt{2D\alpha} dw(t), \qquad \xi(0) = \nu.$$

Дисперсия R_{ν} начального условия определяется из (11.43):

$$-2\alpha R_{\nu} + (\sqrt{2D\alpha})^2 = 0,$$

откуда $R_{\nu}=D>0$.

 Π р и мер 11.15. Поперечная компонента $\xi(t)$ скорости ветра в турбулентной атмосфере является стационарным процессом со спектральной плотностью

$$f_{\xi}(\lambda) = \frac{\sigma_w^2 L v}{2\pi} \cdot \frac{v^2 + 3L^2 \lambda^2}{(v^2 + L^2 \lambda^2)^2},$$
 (11.45)

где σ_w^2 — дисперсия скорости ветра, L>0 — масштаб турбулентности, v — модуль скорости движения летательного аппарата. Построить формирующий фильтр для процесса $\xi(t)$.

Решение. Преобразуем (11.45) к виду, пригодному для проведения декомпозиции $f_{\xi}(\lambda)$, т. е. определения вида многочленов H(x) и F(x).

Oбозначим $\beta = v/L$, тогда (11.45) можно записать как

$$f_{\xi}(\lambda) = \frac{\sigma_w^2 \beta}{2\pi} \cdot \frac{\beta^2 + 3\lambda^2}{(\beta^2 + \lambda^2)^2} = \frac{1}{2\pi} \cdot \frac{\left[\sigma_w \sqrt{\beta} \left(\beta + \sqrt{3} i\lambda\right)\right] \left[\sigma_w \sqrt{\beta} \left(\beta - \sqrt{3} i\lambda\right)\right]}{(\beta + i\lambda)^2 (\beta - i\lambda)^2}.$$

С учетом требования устойчивости многочленов H(x), F(x) получаем

$$H(x) = b_0 + b_1 x,$$
 где $b_0 = \sigma_w \beta \sqrt{\beta}, \quad b_1 = \sigma_w \sqrt{3\beta};$ $F(x) = a_0 + a_1 x + x^2,$ где $a_0 = \beta^2, \quad a_1 = 2\beta.$

Теперь по формулам теоремы 11.8 находим q_1 и q_2 :

$$q_1 = b_1 = \sigma_w \sqrt{3\beta}, \qquad q_2 = b_0 - 2\beta b_1 = \sigma_w \beta \sqrt{\beta} (1 - 2\sqrt{3}).$$

Таким образом, мы получаем для $\eta(t) = \{\eta_1(t), \eta_2(t)\}^*$, где $\eta_1(t) = \xi(t)$, систему уравнений

$$\begin{cases} d\eta_1(t) = \eta_2(t) dt + \sigma_w \sqrt{3\beta} dw(t), \\ d\eta_2(t) = [-2\beta\eta_2(t) - \beta^2\eta_1(t)] dt + \sigma_w \beta \sqrt{\beta} (1 - 2\sqrt{3}) dw(t), \end{cases}$$

где w(t) — стандартный винеровский процесс.

В завершение пункта обсудим численный метод интегрирования системы линейных стохастических уравнений, в котором используется точная дискретизация по времени.

Пусть дана система линейных стохастических уравнений с постоянными коэффициентами (например, система уравнений формирующего фильтра):

$$d\xi(t) = A\xi(t) dt + B dw(t),$$

и пусть $0 = t_0 < t_1 < t_2 < \dots$ — точки, в которых нужно вычислить значения процесса $\xi(t)$. Положим $\xi(t_n) = \xi_n$, а $t_n - t_{n-1} = h = \text{const.}$ Тогда случайная последовательность $\{\xi_n\}$ удовлетворяет следующему разностному стохастическому уравнению:

$$\xi_n = \Phi \xi_{n-1} + \Psi v_n. \tag{11.46}$$

Здесь $\Phi = \Theta(h)$, а $\Theta(t)$ — решение уравнения

$$\dot{\Theta}(t) = A\Theta(t), \qquad \Theta(0) = I, \qquad (11.47)$$

матрица Ψ такова, что $\Psi\Psi^*=G(h),$ где G(t) — решение уравнения метода моментов:

$$\dot{G}(t) = AG(t) + G(t)A^* + BB^*, \qquad G(0) = 0,$$
 (11.48)

 $\{v_n\}$ — дискретный гауссовский стандартный белый шум.

Формулы (11.46)–(11.48) непосредственно следуют из (11.26), (11.27), (11.29).

Заметим также, что матрицы Φ и Ψ не зависят от времени, поэтому расчеты по формулам (11.47) и (11.48) проводятся только один раз.

Замечание. Если шаг дискретизации $h=t_{n+1}-t_n,\, n=0,1,\,\ldots,$ мал, то для приближенного интегрирования уравнений формирующего фильтра можно использовать метод Эйлера (см. п. 11.2 и задачу 9).

Пример 11.16. Провести дискретизацию уравнения

$$d\xi(t) = -2\,\xi(t)\,dt + \sqrt{3}\,dw(t), \qquad \xi(0) = \nu$$

с шагом по времени h = 0,1.

Решение. В данном случае $\Theta(t)=e^{-2t}$, поэтому $\Phi=\Theta(h)=e^{-0.2}\approx 0.819.$ Из формулы (11.48) находим, что

$$\dot{G}(t) = -4G(t) + (\sqrt{3})^2, \qquad G(0) = 0.$$

Отсюда $G(t)=\frac{3}{4}(1-e^{-4t})$ и $G(h)=\frac{3}{4}(1-e^{-0.4})\approx 0.247$. Так как G(h) — скалярная величина, то $\Psi=\sqrt{G(h)}\approx 0.497$.

Итак, разностный вариант стохастического уравнения имеет вид

$$\xi_n = 0.819 \, \xi_{n-1} + 0.497 \, v_n, \qquad \xi_0 = \nu,$$

где $v_n \sim \mathcal{N}(0;1)$ и не зависит от v_m при $n \neq m$.

Замечание. Метод формирующих фильтров вместе с рассмотренным методом численного решения линейных дифференциальных уравнений дают нам практический способ численного моделирования стационарных случайных функций с дробно-рациональной спектральной плотностью.

Если мы хотим дискретизировать линейное уравнение с переменными коэффициентами, то следует соответственно обобщить формулы (11.46)—(11.48). Пусть

$$d\xi(t) = a(t)\xi(t) dt + b(t) dw(t), \qquad \xi(0) = \nu,$$

тогда

$$\xi_n = \Phi_n \xi_{n-1} + \Psi_n v_n.$$

Здесь
$$\Phi_n = \Theta(t_n)\Theta^{-1}(t_{n-1}), \, \dot{\Theta}(t) = a(t)\Theta(t), \, \Theta(0) = I;$$

$$\Psi_n \Psi_n^* = G(t_n),$$

где

$$\dot{G}(t) = a(t)G(t) + G(t)a^*(t) + b(t)b^*(t), \quad t \geqslant t_{n-1}, \qquad G(t_{n-1}) = 0,$$

а процесс $\{v_n\}$ остается по-прежнему стандартным белым шумом. В заключение заметим, что нахождение Ψ_n по $G(t_n)$ есть стандартная задача линейной алгебры, для решения которой имеются многочисленные эффективные численные методы.

11.5. Стохастические дифференциальные уравнения и диффузионные процессы. В п. 2.5 было дано определение однородного диффузионного процесса с вектором сноса a(x) и матрицей диффузии $\Sigma(x)$. Оказывается, между решениями стохастических дифференциальных уравнений и диффузионными процессами имеется теснейшая связь, что объясняется следующим утверждением.

Теорема 11.9. Пусть $\xi(t)$ — решение стохастического дифференциального уравнения (11.8) с начальными условиями (11.9), где f(t,x)=f(x) и $\sigma(t,x)=\sigma(x)$, т.е. уравнение однородно по времени. Если условия теоремы 11.4 выполнены, то $\xi(t)$ является однородным диффузионным процессом с вектором сноса a(x)=f(x) и матрицей диффузии $\Sigma(x)=\sigma(x)\sigma^*(x)$.

Сформулируем условия, при которых переходная плотность $\mathsf{p}_\xi(x,t,y)$ и одномерная плотность $p_\xi(y;t)$ удовлетворяют уравнениям Колмогорова—Фоккера—Планка.

Пусть $f(y) = \{f_1(y), \dots, f_n(y)\}^*$, $\Sigma(y) = \{\Sigma_{ij}(y)\}_{i,j=1,\dots,n}$, где $\Sigma_{ij}(y) = \sum_{k=1}^n \sigma_{ik}(y)\sigma_{kj}(y)$. Введем следующий дифференциальный оператор:

$$L[q] = -\sum_{i=1}^{n} \frac{\partial}{\partial y_i} (f_i(y)q(y)) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2}{\partial y_i \partial y_j} (\Sigma_{ij}(y)q(y)), \qquad (11.49)$$

где q(y) — достаточно гладкая скалярная функция.

Теорема 11.10. Пусть выполнены условия теоремы 11.4 и, кроме того, функции $\{f_i(y)\}$ непрерывно дифференцируемы, а функции $\{\sigma_{ij}(y)\}$ дважды непрерывно дифференцируемы. Если переходная плотность $\mathsf{p}_\xi(x,t,y)$ дважды непрерывно дифференцируема по y и один раз непрерывно дифференцируема по $t \in (0,T]$ при всех $x \in \mathbb{R}^n$, то она удовлетворяет прямому уравнению Колмогорова:

$$\frac{\partial \mathsf{p}_{\xi}(x,t,y)}{\partial t} = L[\mathsf{p}_{\xi}(x,t,y)], \qquad \mathsf{p}_{\xi}(x,0,y) = \delta(y-x). \tag{11.50}$$

При этом одномерная плотность распределения $p_{\xi}(y;t)$ удовлетворяет уравнению

$$\frac{\partial p_{\xi}(y;\,t)}{\partial t} = L[p_{\xi}(y;\,t)], \qquad p_{\xi}(y;\,0) = p_{0}(y), \tag{11.51}$$

 $\mathit{rde}\ p_{\,0}(y)\ -$ плотность распределения $\xi(0).$

Уравнения (11.50), (11.51) дают принципиальную возможность вычислить конечномерные законы распределения процесса $\xi(t)$, удовлетворяющего стохастическому дифференциальному уравнению с коэффициентами, не зависящими от времени. Наиболее сложной проблемой является отыскание условий, при которых плотности р $_{\xi}(x,t,y)$ и $p_{\xi}(y;t)$ существуют. Рассмотрим эту проблему на примере линейного уравнения.

 Π р и м е р 11.17. Скалярная случайная функция $\xi(t)$ удовлетворяет линейному стохастическому дифференциальному уравнению

$$d\xi(t) = a\xi(t) dt + b dw(t), \qquad \xi(0) = \nu,$$

где $\nu \sim \mathcal{N}(m_{\nu}; \gamma_{\nu})$. Найти р $_{\xi}(x,t,y)$ и $p_{\,\xi}(y;\,t)$.

Решение. Предположим, что $\mathbf{p}_{\xi}(x,t,y)$ существует и является достаточно гладкой, тогда из (11.50) следует (с учетом $f(x)=a\,x$ и $\sigma(x)=b$):

$$\frac{\partial \mathsf{p}_{\xi}(x,t,y)}{\partial t} = -a \frac{\partial}{\partial y} (y \, \mathsf{p}_{\xi}(x,t,y)) + \frac{b^2}{2} \cdot \frac{\partial^2 \mathsf{p}_{\xi}(x,t,y)}{\partial^2 y}. \tag{11.52}$$

Рассмотрим функцию

$$\mathsf{p}_{\xi}(x,t,y) = \frac{1}{\sqrt{2\pi\gamma^{0}(t)}} \exp\left\{-\frac{(y-m^{x}(t))^{2}}{2\gamma^{0}(t)}\right\},\tag{11.53}$$

где $m^x(t),\, \gamma^0(t)$ являются решениями уравнения метода моментов:

$$\begin{cases} \dot{m}^x(t) = a \, m^x(t), & m^x(0) = x; \\ \dot{\gamma}^0(t) = 2a \, \gamma^0(t) + b^2, & \gamma^0(0) = 0. \end{cases}$$
 (11.54)

Если $\gamma^0(t)>0$, то $\mathbf{p}_\xi(x,t,y)$ определена при всех t>0. Непосредственной подстановкой выражения (11.53) в (11.52) с учетом (11.54) можно показать, что $\mathbf{p}_\xi(x,t,y)$ удовлетворяет уравнению (11.52) и, кроме того, $\mathbf{p}_\xi(x,t,y)\to\delta(x-y)$ при $t\to0$ (так как $\gamma^0(t)\to0$ при $t\to0$). Таким образом, вопрос о существовании $\mathbf{p}_\xi(x,t,y)$ упирается в условие $\gamma^0(t)>0$. Очевидно, что условие будет выполнено, если $b\neq0$, т. е. коэффициент диффузии $\Sigma=b^2>0$.

Пусть теперь $p_{\xi}(y; t)$ при всех $t \geqslant 0$ имеет вид

$$p_{\xi}(y; t) = \frac{1}{\sqrt{2\pi\gamma_{\xi}(t)}} \exp\left\{-\frac{(y - m_{\xi}(t))^{2}}{2\gamma_{\xi}(t)}\right\},$$
 (11.55)

где $m_{\xi}(t), \gamma_{\xi}(t)$ опять определяются из уравнений метода моментов:

$$\begin{cases} \dot{m}_{\xi}(t) = a \, m_{\xi}(t), & m_{\xi}(0) = m_{\nu}, \\ \dot{\gamma}_{\xi}(t) = 2a \, \gamma_{\xi}(t) + b^{2}, & \gamma_{\xi}(0) = \gamma_{\nu}. \end{cases}$$
(11.56)

Если $\gamma_{\xi}(t) > 0$ при всех $t \geqslant 0$, то нетрудно проверить, что

$$\frac{\partial p_{\,\xi}(y;\,t)}{\partial t} = -a\frac{\partial}{\partial y}(y\,p_{\,\xi}(y;\,t)) + \frac{b^2}{2}\cdot\frac{\partial^2 p_{\,\xi}(y;\,t)}{\partial^2 y}, \qquad p_{\,\xi}(y;\,0) = p_{\nu}(y),$$

где $p_{\nu}(y)$ — гауссовская плотность начального вектора ν . Из (11.56) следует, что если $b\neq 0$, то $\gamma_{\xi}(t)>0$ выполнено при всех t>0 для любого $\gamma_{\nu}\geqslant 0$.

Замечание. Условие $b \neq 0$ вполне закономерно. Действительно, пусть $\xi(t) \in \mathbb{R}^n$ и

$$d\xi(t) = A\xi(t) dt + B dw(t), \qquad \xi(0) = \nu.$$
 (11.57)

Тогда $\gamma_{\xi}(t) = \mathbf{cov}\{\xi(t), \xi(t)\}$ удовлетворяет уравнению

$$\dot{\gamma}_{\xi}(t) = A\gamma_{\xi}(t) + \gamma_{\xi}(t)A^* + BB^*, \qquad \gamma_{\xi}(0) = \gamma_{\nu}.$$

Можно показать, что $\gamma_{\xi}(t)>0$ при любом $\gamma_{\nu}\geqslant 0$ тогда и только тогда, когла

$$rank{B, AB, ..., A^{n-1}B} = n. (11.58)$$

Условие (11.58) хорошо известно в теории управления и называется условием полной управляемости системы (11.57). В случае n=1 (11.58) означает $B \neq 0$.

11.6. Фильтр Калмана—Бьюси. В п. 6.4 приведено решение задачи с.к.-оптимального оценивания случайных последовательностей, описываемых линейными разностными стохастическими уравнениями. В гауссовском случае эта задача имеет явное решение в форме дискретного фильтра Калмана. Оказывается, что этот результат можно распространить и на случайные функции, описываемые линейными стохастическими дифференциальными уравнениями.

Задача фильтрации. Рассмотрим пару случайных процессов $\{x(t) \in \mathbb{R}^n, \ y(t) \in \mathbb{R}^m, \ t \in [0,T]\}$, описываемых системой линейных стохастических дифференциальных уравнений

$$\begin{cases} dx(t) = A(t) x(t) dt + B(t) dw^{1}(t), \\ dy(t) = a(t) x(t) dt + b(t) dw^{2}(t), \end{cases}$$
(11.59)

с начальными условиями $x(0) \in \mathbb{R}^n$, y(0) = 0. В уравнениях (11.59) $w^1(t)$, $w^2(t)$ — стандартные винеровские процессы размерности k_1 , k_2 соответственно, x(0) — гауссовский случайный вектор с параметрами

$$\mathbf{M}\{x(0)\} = m_0, \quad \mathbf{cov}\{x(0), x(0)\} = \gamma_0.$$

Случайные процессы $w^1(t)$, $w^2(t)$ и случайный вектор x(0) независимы. В задаче фильтрации (оценивания) предполагается, что процесс x(t) не наблюдаем, а наблюдать можно лишь процесс y(t), который несет неполную информацию о процессе x(t). Задача фильтрации состоит в определении с.к.-оптимальной оценки процесса x(t) по наблюдениям процесса x(t) наблюдениям процесса

с дискретным временем (п. 6.4), с.к.-оптимальной оценкой является условное математическое ожидание, а именно:

$$m(t) = \mathbf{M}\{x(t) \mid \mathcal{F}_t^y\},\,$$

где

$$\mathcal{F}_t^y = \sigma\{y(s) \colon 0 \leqslant s \leqslant t\}$$

есть σ -алгебра, порожденная значениями процесса y(s) до текущего момента времени t (см. п. 11.1). Замечательный результат Калмана и Бьюси состоит в выводе уравнений, описывающих эволюцию условного математического ожидания m(t).

Теорема 11.11 (Калман, Бьюси). Пусть в уравнениях (11.59) матричные функции A(t), B(t), a(t), b(t) имеют кусочно непрерывные компоненты, матричная функция b(t) $b^*(t)$ — равномерно невырожденная, т. е. найдется константа c>0, такая, что для любых $t\in [0,T]$ и $\lambda\in\mathbb{R}^m$ имеет место неравенство

$$\lambda^* b(t) b^*(t) \lambda \geqslant c|\lambda|^2. \tag{11.60}$$

Тогда условное математическое ожидание $m(t) = \mathbf{M}\{x(t) \mid \mathcal{F}_t^y\}$ есть единственное решение системы стохастических дифференциальных уравнений

$$dm(t) = A(t) m(t) dt + \gamma(t) a^*(t) (b(t)b^*(t))^{-1} [dy(t) - a(t) m(t) dt],$$
(11.61)

$$\dot{\gamma}(t) = A(t)\gamma(t) + \gamma(t)A^*(t) + B(t)B^*(t) - \gamma(t)a^*(t)(b(t)b^*(t))^{-1}a(t)\gamma(t)$$
(11.62)

с начальными условиями

$$m(0) = m_0, \qquad \gamma(0) = \gamma_0.$$
 (11.63)

Оценка m(t) — несмещенная, m.e. $\mathbf{M}\{x(t)-m(t)\}=0$. Детерминированная матричная функция $\gamma(t)$ в уравнениях (11.61) u (11.62) равна ковариации ошибки оценки m(t):

$$\gamma(t) = \mathbf{cov}\{x(t) - m(t), x(t) - m(t)\} = \mathbf{M}\{(x(t) - m(t))(x(t) - m(t))^*\},\$$

a npoyecc

$$\xi(t) = \int_{0}^{t} (b(s)b^{*}(s))^{-1/2} [dy(s) - a(s) m(s) ds], \quad t \in [0, T],$$

является стандартным винеровским.

Уравнения (11.61)–(11.63) описывают рекуррентный алгоритм с.к.-оптимальной фильтрации гауссовского процесса x(t), называемый фильтром Kалмана–Bьюси.

Замечания. 1) Процесс $\xi(t)$ называется обновляющим для процесса наблюдений y(t). Его важность определяется тем, что он, являясь стандартным винеровским процессом, порождает ту же самую σ -алгебру событий, что и процесс наблюдений y(t), т. е. $\mathcal{F}_t^{\xi} = \mathcal{F}_t^y$.

2) Поскольку m(t) — несмещенная оценка для x(t) по наблюдениям $\{y(s), s \leq t\}$, то ковариационная матрица $\gamma(t)$ ее ошибки $\Delta x(t) = x(t) - m(t)$ характеризует точность оценки m(t). Поэтому $\mathbf{M}\{|\Delta x(t)|^2\} = \operatorname{tr}[\gamma(t)]$ в силу того, что $\mathbf{M}\{\Delta x(t)\} = 0$.

Так как $\{x(t),\ m(t)\}$ — гауссовский процесс, $\Delta x(t) \sim \mathcal{N}(0;\gamma(t))$. В частности, $\mathbf{P}\Big\{|\lambda^*\Delta x(t)|\leqslant 3\sqrt{\lambda^*\gamma(t)\lambda}\Big\}\approx 0,997$ для любого вектора $\lambda\neq 0$. Заметим, что из (11.62) следует, что $\gamma(t)$ — неслучайная функция времени, поэтому точность процедуры фильтрации может быть рассчитана заранее, т. е. до начала процедуры обработки наблюдений.

3) В силу линейности уравнений фильтрации (11.61), (11.62) для практической реализации фильтра Калмана—Бьюси можно использовать процедуру дискретизации по времени из п. 11.4.

Рассмотрим некоторые примеры использования полученного результата.

Пример 11.18 (задача оценивания параметра). Найти с.к.-оптимальную оценку гауссовской случайной величины $\theta \sim \mathcal{N}(m_0; \sigma_0^2)$ по наблюдениям случайного процесса y(t), удовлетворяющего стохастическому дифференциальному уравнению

$$dy(t) = \theta dt + \sigma_1 dw(t), \qquad y(0) = 0,$$

где $\sigma_1 \neq 0$.

Решение. Если ввести функцию $x(t)=\theta$, то пара функций $\{x(t),y(t)\}$ удовлетворяет системе линейных стохастических дифференциальных уравнений

$$\begin{cases}
dx(t) = 0, \\
dy(t) = x(t) dt + \sigma_1 dw(t).
\end{cases}$$
(11.64)

Тогда с.к.-оптимальная оценка для θ есть

$$\mathbf{M}\{\theta \mid \mathcal{F}_t^y\} = \mathbf{M}\{x(t) \mid \mathcal{F}_t^y\} = m(t).$$

Применяя теорему 11.11 и формулы (11.61), (11.62) с параметрами $A(t)=0,\ B(t)=0,\ a(t)=1,\ b(t)=\sigma_1,\$ получаем, что m(t) и $\gamma(t)=\mathbf{M}\{(\theta-m(t))^2\}$ удовлетворяют системе стохастических урав-

16 Б.М. Миллер и А.Р. Панков

нений

$$\begin{cases} dm(t) = \frac{\gamma(t)}{\sigma_1^2} [dy(t) - m(t) dt], & m(0) = m_0, \\ \dot{\gamma}(t) = -\frac{\gamma^2(t)}{\sigma_1^2}, & \gamma(0) = \sigma_0^2. \end{cases}$$

Уравнение для $\gamma(t)$ имеет явное решение

$$\gamma(t) = \frac{\sigma_0^2 \sigma_1^2}{\sigma_0^2 t + \sigma_1^2}.$$

Тогда m(t) удовлетворяет линейному стохастическому уравнению

$$dm(t) = \frac{\sigma_0^2}{\sigma_0^2 t + \sigma_1^2} [dy(t) - m(t) dt],$$

решение которого имеет вид

$$m(t) = \Phi(t,0)m_0 + \int_0^t \Phi(t,s) \frac{\sigma_0^2}{\sigma_0^2 s + \sigma_1^2} dy(s),$$

где $\Phi(t,s)=\exp\Bigl\{-\int\limits_{s}^{t} \frac{\sigma_{0}^{2}}{\sigma_{0}^{2}u+\sigma_{1}^{2}}\,du\Bigr\}$ — решение уравнения

$$\begin{cases} \frac{d}{dt}\Phi(t,s) = -\frac{\sigma_0^2}{\sigma_0^2t + \sigma_1^2}\Phi(t,s), & t \geqslant s, \\ \Phi(s,s) = 1. \end{cases}$$

Нетрудно видеть, что $\Phi(t,s)=\frac{\sigma_0^2s+\sigma_1^2}{\sigma_0^2t+\sigma_1^2}=\frac{\gamma(t)}{\gamma(s)}$. Подставляя это соотношение в выражение для m(t), получаем

$$\Phi(t,0)m_0 = \frac{\gamma(t)}{\gamma(0)}m_0 = \frac{\gamma(t)m_0}{\sigma_0^2}$$

$$\int_{0}^{t} \Phi(t,s) \frac{\sigma_0^2}{\sigma_0^2 s + \sigma_1^2} dy(s) = \int_{0}^{t} \Phi(t,s) \frac{\gamma(s)}{\sigma_1^2} dy(s) = \int_{0}^{t} \frac{\gamma(t)}{\sigma_1^2} dy(s) = \frac{\gamma(t)}{\sigma_1^2} y(t).$$

Итак,

$$\widehat{\theta}(t) = m(t) = \gamma(t) \left[\frac{m_0}{\sigma_0^2} + \frac{y(t)}{\sigma_1^2} \right] = \frac{m_0 \sigma_1^2 + y(t) \sigma_0^2}{\sigma_0^2 t + \sigma_1^2}. \quad \blacksquare$$

Пример 11.19 (наблюдение процесса Орнштейна–Уленбека). Пусть скалярные процессы $\{x(t),\,y(t)\}$ удовлетворяют системе уравнений

$$\begin{cases} dx(t) = -\alpha x(t) dt + dw^{1}(t), & x(0) \sim \mathcal{N}(m_{0}; \gamma_{0}), \\ dy(t) = x(t) dt + \sigma dw^{2}(t), & y(0) = 0, \end{cases}$$

где $\alpha > 0$, $\sigma \neq 0$. Исследовать поведение с.к.-оптимального фильтра при $t \to \infty$ и построить стационарный вариант процесса фильтрации.

Решение. Уравнение (11.61) фильтра Калмана-Бьюси для процесса $m(t) = \mathbf{M}\{x(t)|\mathcal{F}_t^y\}$ имеет вид

$$dm(t) = -\alpha m(t) dt + \frac{\gamma(t)}{\sigma^2} [dy(t) - m(t) dt], \qquad m(0) = m_0,$$

а уравнение (11.62) для дисперсии $\gamma(t) = \mathbf{M}\{(x(t) - m(t))^2\}$ ошибки фильтрации есть скалярное уравнение Риккати

$$\dot{\gamma}(t) = -2\alpha\gamma(t) + 1 - \frac{\gamma^2(t)}{\sigma^2}, \qquad \gamma(0) = \gamma_0.$$

Это уравнение имеет явное решение

$$\gamma(t) = \widetilde{\gamma}_1 + \frac{(\widetilde{\gamma}_1 - \widetilde{\gamma}_2)(\gamma_0 - \widetilde{\gamma}_1)}{(\gamma_0 - \widetilde{\gamma}_2)e^{2\beta t} - (\gamma_0 - \widetilde{\gamma}_1)},$$

где
$$\beta = \sqrt{\alpha^2 + \sigma^{-2}}$$
, $\widetilde{\gamma}_1 = \sigma^2(\beta - \alpha)$, $\widetilde{\gamma}_2 = -\sigma^2(\beta + \alpha)$.

где $\beta=\sqrt{\alpha^2+\sigma^{-2}},\,\widetilde{\gamma}_1=\sigma^2(\beta-\alpha),\,\widetilde{\gamma}_2=-\sigma^2(\beta+\alpha).$ С учетом условий примера заключаем, что $\beta>0,\,\,\widetilde{\gamma}_1>0$ и $\gamma_0-\widetilde{\gamma}_2>0$. Тогда из полученного выражения для $\gamma(t)$ при условии $\gamma_0\neq\widetilde{\gamma}_1$ следует, что $\gamma(t)\to\widetilde{\gamma}_1$ при $t\to\infty$. Если же $\gamma_0=\widetilde{\gamma}_1$, то $\dot{\gamma}(t)=0$ и $\gamma(t) = \widetilde{\gamma}_1$.

Таким образом, при $t\gg 1$ можно считать, что $\gamma(t)=\widetilde{\gamma}_1,$ а уравнение фильтрации становится стационарным, т. е.

$$dm(t) = -\alpha m(t) dt + \frac{\widetilde{\gamma}_1}{\sigma^2} [dy(t) - m(t) dt].$$

Последнее означает, что в данной задаче существует стационарный вариант фильтра Калмана-Бьюси. С учетом полученного выражения для $\widetilde{\gamma}_1$ он принимает вид

$$dm(t) = -\beta m(t) dt + (\beta - \alpha) dy(t)$$
.

Замечание. Оказывается, что если в уравнениях (11.59), описывающих систему наблюдения, параметры $A,\ B,\ a$ и b не зависят от времени, а матрица А устойчива, то результат, обнаруженный в примере 11.19, является закономерным: при любом начальном условии $\gamma_0\geqslant 0$ существует $\widetilde{\gamma}=\lim_{t o\infty}\gamma(t)$, причем $\widetilde{\gamma}$ не зависит от γ_0 и $\widetilde{\gamma}\geqslant 0$. При этом уравнение фильтрации (11.61) принимает стационарный (предельный) вид

$$dm(t) = A m(t) dt + K [dy(t) - a m(t) dt],$$

где $K = \tilde{\gamma} a^* (b \, b^*)^{-1}$ — постоянный матричный коэффициент.

Задача экстраполяции. Одной из практически важных задач является задача прогнозирования или экстраполяции. Пусть процессы $\{x(t), y(t)\}$ описываются линейной системой стохастических уравнений (11.59). Предположим, что наблюдению доступны значения процесса y(t) лишь до некоторого момента времени s < t, и требуется с.к.-оптимально оценить x(t).

Тогда $m_s(t) = \mathbf{M}\{x(t) \mid \hat{\mathcal{F}}_s^y\}$ представляет собой искомую оценку, которая называется $c.\kappa$.-оптимальной оценкой прогноза или экстра-поляции. Покажем, как оценка прогноза выражается через оценку $\{m(t), \gamma(t)\}$ фильтра Калмана—Бьюси.

В силу уравнения (11.59) процесс x(t) допускает представление (см. п. 11.3)

$$x(t) = \Phi(t,s)x(s) + \int_{s}^{t} \Phi(t,u)B(u) dw^{1}(u), \qquad (11.65)$$

где $\Phi(t,s) = \Theta(t)\Theta^{-1}(s)$, а $\Theta(t)$ — матрица Коши фундаментальных решений. Поскольку процессы w^1, w^2 независимы, значения приращений винеровского процесса $w^1(u)$ при $u\geqslant s$ не зависят от значений процесса y(u) при u< s. Поэтому

$$\mathbf{M}\left\{\int_{s}^{t} \Phi(t, u) B(u) dw^{1}(u) \mid \mathcal{F}_{s}^{y}\right\} = 0$$

и, следовательно,

$$m_s(t) = \mathbf{M}\{\Phi(t, s)x(s) \mid \mathcal{F}_s^y\} = \Phi(t, s)\mathbf{M}\{x(s) \mid \mathcal{F}_s^y\} = \Phi(t, s)m(s).$$
(11.66)

Использование представления (11.65) позволяет получить выражение и для ковариации ошибки оценки прогноза:

$$\gamma_s(t) = \mathbf{M}\{(x(t) - m_s(t)))(x(t) - m_s(t))^*\} =$$

$$= \Phi(t, s)\gamma(s)\Phi^*(t, s) + \int_s^t \Phi(t, u)B(u)B^*(u)\Phi^*(t, u) du. \quad (11.67)$$

Соотношения (11.66), (11.67) можно представить в дифференциальной форме:

$$\begin{cases} \dot{m}_{s}(t) = A(t)m_{s}(t), & m_{s}(s) = m(s), \\ \dot{\gamma}_{s}(t) = A(t)\gamma_{s}(t) + \gamma_{s}(t)A^{*}(t) + B(t)B^{*}(t), & \gamma_{s}(s) = \gamma(s), \end{cases}$$
(11.68)

где m(s) — с.к.-оптимальная оценка для x(s), а $\gamma(s)$ — ковариационная матрица ее ошибки.

11.7. Задачи для самостоятельного решения.

1. Пусть $\{f(\tau),\, \tau\geqslant 0\}$ — с. к.-непрерывная неупреждающая случайная функция. Доказать, что

$$\eta(t) = \int\limits_0^t f(au) \ dw(au), \quad t \geqslant 0,$$

является процессом с ортогональными приращениями, и найти его ковариационную функцию.

Other.
$$R_{\eta}(t,s) = \int\limits_{0}^{\min(t,s)} \mathbf{M}\{\left|f(\tau)\right|^{2}\} \ d\tau.$$

2. Доказать, что нелинейное стохастическое дифференциальное уравнение

$$d\xi(t) = -\arg \xi(t) dt + \frac{dw(t)}{1 + \xi^2(t)}, \qquad \xi(0) = 0$$

имеет единственное решение.

3. Решить стохастическое дифференциальное уравнение

$$d\xi(t) = a\,\xi(t)\,dt + b\,\xi(t)\,dw(t).$$

Otbet. $\xi(t) = \xi(0) \exp\{(a - b^2/2) t + b w(t)\}.$

4. Пусть случайный процесс $\{\xi(t),\,t\geqslant 0\}$ удовлетворяет стохастическому уравнению

$$d\xi(t) = a(t)\,\xi(t)\,dt + \sigma(t)\,\xi(t)\,dw(t), \qquad \mathbf{P}\{\xi(0) > 0\} = 1$$

с кусочно непрерывными детерминированными функциями a(t) и $\sigma(t)$. Доказать, что

$$\xi(t) = \xi(0) \exp \left\{ \int_{0}^{t} [a(s) - \frac{1}{2}\sigma^{2}(s)] ds + \int_{0}^{t} \sigma(s) dw(s) \right\}.$$

Указание. Вычислить $d\xi(t)$ по правилу дифференцирования Ито.

5. Доказать, что система двух стохастических дифференциальных уравнений

$$\begin{cases} d\xi_1(t) = -\frac{1}{2}\xi_1(t) dt + \xi_2(t) dw(t), & \xi_1(0) = 0, \\ d\xi_2(t) = -\frac{1}{2}\xi_2(t) dt - \xi_1(t) dw(t), & \xi_2(0) = 1 \end{cases}$$

имеет решение $\xi_1(t) = \sin w(t)$, $\xi_2(t) = \cos w(t)$.

6. Построить формирующий фильтр для центрированного гауссовского стационарного процесса $\xi(t)$, имеющего спектральную плотность

$$f_{\xi}(\omega) = \frac{D}{\pi} \cdot \frac{(a + \gamma\omega_0)b^2 + (a - \gamma\omega_0)\omega^2}{b^4 + 2(a^2 - \omega_0^2)\omega^2 + \omega^4},$$

где
$$\omega_0 = b^2 - a^2$$
, $a > \gamma \omega_0$, $D > 0$.

Ответ.

$$\left\{ \begin{array}{l} d\eta_1(t) = \eta_2(t) \ dt + q_1 \ dw(t), \\ \\ d\eta_2(t) = -b^2 \ \eta_1(t) \ dt - 2 a \eta_2(t) \ dt + q_1(b-2a) \ dw(t), \end{array} \right.$$

где $\eta_1(t) = \xi(t), q_1 = \sqrt{2D(a - \gamma\omega_0)}.$

7. Пусть требуется оценить n-мерный гауссовский случайный вектор $\theta \sim \mathcal{N}(\mu; \gamma_0)$ по наблюдениям случайного процесса $y(t) \in \mathbb{R}^m$, удовлетворяющего стохастическому уравнению

$$dy(t) = a(t) \theta dt + b(t) dw(t), \qquad y(0) = 0$$

где $a(t),\ b(t)$ — неслучайные матричные функции, причем $b(t)\ b^*(t)$ — равномерно невырожденная. Вывести уравнения для с.к.-оптимальной оценки $m(t)=\mathbf{M}\{\theta\mid\mathcal{F}_t\}$ и матрицы $\gamma(t)=\mathbf{M}\{(\theta-m(t))(\theta-m(t))^*\}$ ковариации ее ошибки.

Ответ.

$$\begin{cases} dm(t) = \gamma(t)a^*(t)(b(t)b^*(t))^{-1}[dy(t) - a(t) \ m(t) \ dt], & m(0) = \mu, \\ \dot{\gamma}(t) = -\gamma(t)a^*(t)(b(t)b^*(t))^{-1}a(t)\gamma(t), & \gamma(0) = \gamma_0. \end{cases}$$

8. (Продолжение задачи 7.) Доказать, что в условиях предыдущей задачи при положительно определенной матрице $\gamma_0>0$

$$\gamma(t) = \left(\gamma_0^{-1} + \int_0^t a^*(s)(b(s)b^*(s))^{-1}a(s)\,ds\right)^{-1}.$$

Указание. Рассмотреть функцию $G(t) = \gamma^{-1}(t)$ и убедиться, что

$$\dot{G}(t) = a^*(t)(b(t)b^*(t))^{-1}a(t).$$

9. Пусть $\xi(t)$ удовлетворяет уравнению

$$d\xi(t) = a(t) \, \xi(t) \, dt + b(t) \, dw(t), \quad \xi(0) = \nu.$$

Обосновать приближенный метод дискретизации этого уравнения для малого шага дискретизации h (метод Эйлера):

$$\xi(t_{n+1}) = (1 + a(t_n)h)\,\xi(t_n) + \sqrt{hb}(t_n)\,v_n, \quad n = 0, 1, 2, \dots, \quad \xi(0) = \nu,$$

где $t_n = nh$, а $\{v_n\}$ — стандартный гауссовский дискретный белый шум. У казание. Заменить в исходном уравнении дифференциалы конечными разностями.

10. Пусть $\{y(t), t \geqslant 0\}$ — наблюдаемый процесс, удовлетворяющий уравнению

$$dy(t) = e^{-t/2\beta}\theta dt + dw(t), \qquad y(0) = 0,$$

где $\beta > 0$, $\theta \sim \mathcal{N}(0;1)$. Пусть $\widehat{\theta}_t$ — с.к.-оптимальная оценка θ по наблюдениям $\{y(s), s \leqslant t\}$. Доказать, что $\gamma(t) = \mathbf{M}\{(\theta - \widehat{\theta}_t)^2\} \to 1/(1+\beta)$ при $t \to \infty$. У казание. Воспользоваться алгоритмом Калмана–Бьюси.

§ 12. Марковские случайные функции с дискретным множеством состояний

12.1. Потоки событий. Понятие потока событий имеет ключевое значение для построения математических моделей марковских случайных функций с дискретным множеством состояний.

Определение 12.1. *Потоком событий* называется последовательность одинаковых событий, происходящих одно за другим через промежутки времени случайной длины.

Пусть здесь и далее $t \geqslant 0, h > 0$. Обозначим через $\mathbf{P}(t, t+h)$ вероятность появления хотя бы одного события на промежутке времени [t, t+h]. Предположим, что при каждом t существует

$$\lambda(t) = \lim_{h \to 0} \frac{\mathbf{P}(t, t+h)}{h}.$$

Определение 12.2. Функция $\lambda(t)$ называется *интенсивностью* потока событий (в точке t).

Рассмотрим некоторые предположения о потоке событий, позволяющие построить его содержательную математическую модель.

Определение 12.3. Пусть $n(t_1, t_2)$ — случайное число событий из потока, происходящих на промежутке $[t_1, t_2]$. Поток называется однородным или стационарным, если законы распределения случайных величин $n(t_1, t_2)$ и $n(t_1 + s, t_2 + s)$ совпадают при всех $s \geqslant 0$.

Замечания. 1) Очевидно, что однородность потока означает

$$\mathbf{P}\{n(s, s+t) = m\} = \mathbf{P}\{n(0, t) = m\} \quad \forall s, t \ge 0, \quad m = 0, 1, 2, \dots$$

Поэтому поведение однородного потока можно изучать лишь на промежутке [0,t]. Далее мы будем обозначать

$$\eta(t) = n(0, t), \quad t \geqslant 0.$$
(12.1)

2) Интенсивность однородного потока постоянна, т. е. $\lambda(t) \equiv \lambda$:

$$\lambda(t) = \lim_{h \to 0} \frac{\mathbf{P}(t, t+h)}{h} = \lim_{h \to 0} \frac{\mathbf{P}(0, h)}{h} = \lambda(0) = \lambda$$

для всякого $t \geqslant 0$.

Определение 12.4. Поток событий называется *ординарным*, если для всех $t \geqslant 0, \ h > 0$ справедливы соотношения

$$\mathbf{P}\{n(t, t+h) = 1\} = \lambda(t)h + o(h),$$

$$\mathbf{P}\{n(t, t+h) > 1\} = o(h),$$

где $\lambda(t)$ — ограниченная функция, $\frac{o(h)}{h} o 0$ при h o 0.

Замечания. 1) Требование ординарности означает, что события в потоке следуют строго одно за другим и не происходят вместе:

$$\lim_{h \to 0} \frac{\mathbf{P}\{n(t, t+h) > 1\}}{\mathbf{P}\{n(t, t+h) = 1\}} = \lim_{h \to 0} \frac{o(h)}{\lambda(t)h + o(h)} = 0.$$

Последнее означает, что вероятность появления на интервале длины h двух и более событий при малых h пренебрежимо мала по сравнению с вероятностью появления одного события.

2) Если поток является однородным, то

$$\mathbf{P}\{n(t, t+h) = 1\} = \lambda h + o(h).$$

Пусть выбраны произвольные точки $0=t_0\leqslant t_1\leqslant\ldots\leqslant t_{m+1}$. Рассмотрим совокупность случайных величин

$$\xi_k = n(t_k, t_{k+1}), \quad k = 0, 1, \dots, m.$$

Определение 12.5. Поток событий называется *потоком без по-следействия*, если случайные величины $\{\xi_0,\xi_1,\ldots,\xi_m\}$ независимы в совокупности.

О пределение 12.6. Ординарный поток без последействия называется nyaccohobckum nomokom cobumuü. Если пуассоновский поток является также и однородным, то он называется npocmeйuum nomokom cobumuü.

Смысл термина «пуассоновский поток» проясняет следующее утверждение.

Tеорема 12.1. Пусть $\eta(t)$ — число событий в простейшем потоке интенсивности λ на промежутке [0,t]. Тогда

$$\mathbf{P}\{\eta(t) = m\} = \exp\{-\lambda t\} \frac{(\lambda t)^m}{m!}, \quad m = 0, 1, 2, \dots$$
 (12.2)

Таким образом, при любых $t \geqslant 0$ случайная величина $\eta(t)$ имеет распределение Пуассона с параметром λt . Отсюда, в частности, следует, что $\eta(1)$ распределена по Пуассону с параметром λ .

Другие свойства пуассоновского потока рассмотрим на примерах.

Пример 12.1. Показать, что интенсивность простейшего потока равна среднему числу событий, происходящих на интервале времени единичной длины.

Решение. Пусть n(t,t+1) — число событий на интервале единичной длины. В силу однородности с учетом (12.1) имеем

$$n(t, t + 1) = n(0, 1) = \eta(1)$$

Из теоремы 12.1 следует $\mathbf{P}\{\eta(1)=m\}=rac{\lambda^m}{m!}\,e^{-\lambda},$ поэтому

$$\mathbf{M}\{n(t,t+1)\} = \mathbf{M}\{\eta(1)\} = \sum_{m=0}^{\infty} \frac{m\lambda^m}{m!} e^{-\lambda} = \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} e^{-\lambda} = \lambda.$$

Итак, $\mathbf{M}\{n(t,t+1)\} \equiv \lambda$ что и требовалось доказать.

Пример 12.2. Пусть τ — случайная длина интервала времени между двумя последовательными событиями в простейшем потоке. Доказать, что τ имеет экспоненциальное распределение $E(\lambda)$ с параметром λ :

$$\mathbf{P}\{\tau \leqslant t\} = 1 - e^{-\lambda t}, \quad t \geqslant 0. \tag{12.3}$$

Решение. Пусть $\eta(t)$ определено в (12.1). Тогда в силу (12.2)

$$\mathbf{P}\{\tau > t\} = \mathbf{P}\{\eta(t) = 0\} = e^{-\lambda t}, \quad t \geqslant 0.$$

Следовательно, функция распределения $F_{ au}(t)$ случайной величины au имеет вид

$$F_{\tau}(t) = \mathbf{P}\{\tau \leqslant t\} = 1 - \mathbf{P}\{\tau > t\} = 1 - e^{-\lambda t}, \quad t \geqslant 0.$$

При этом $f_{\tau}(t) = \frac{dF_{\tau}(t)}{dt} = \lambda e^{-\lambda t}, t \geqslant 0,$ — плотность распределения τ . Итак, $\tau \sim E(\lambda)$, что и требовалось доказать.

Следующий пример показывает, что распределение $E(\lambda)$ обладает интересным свойством, тесно связанным с понятием отсутствия последействия.

 Π р и м е р 12.3. Показать, что в простейшем потоке распределение времени от текущего момента до момента появления очередного события не зависит от того, сколько прошло времени от момента появления последнего события до текущего момента.

Решение. Пусть s — текущий момент времени, τ — время, отсчитываемое с момента появления последнего события, а $\tau_1=\tau-s$ — время ожидания очередного события. Тогда для каждого $t\geqslant 0$

$$\mathbf{P}\{\tau_1 > t \mid \tau \geqslant s\} = \frac{\mathbf{P}\{\tau - s > t\}}{\mathbf{P}\{\tau \geqslant s\}} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda s} = \mathbf{P}\{\tau > s\}.$$

Таким образом.

$$\mathbf{P}\{\tau_1 \leqslant t \mid \tau \geqslant s\} = \mathbf{P}\{\tau \leqslant t\} = F_{\tau}(t) = 1 - e^{-\lambda t}.$$

Итак, условное распределение СВ τ_1 не зависит от s и совпадает с распределением СВ $\tau.$

Суммируя все свойства процесса $\eta(t)$, рассмотренные выше, мы видим, что $\eta(t)$ — пуассоновский процесс, рассмотренный в п. 10.2. Заметим, что свойство независимости приращений процесса $\eta(t)$ есть просто другая формулировка условия отсутствия последействия потока. Очевидно также, что $\eta(t)$ является марковским случайным процессом (как всякий процесс с независимыми приращениями).

Пример 12.4. На телефонную станцию поступает простейший поток заявок на переговоры. В среднем в одну минуту поступают три заявки. Какова вероятность того, что в течение двух минут на станцию не поступит ни одной заявки?

Решение. Пусть N — случайное число заявок в одну минуту, тогда по условию $\lambda = \mathbf{M}\{N\} = 3$. Если τ — время ожидания очередной заявки, то искомая вероятность равна

$$\mathbf{P}\{\tau > 2\} = 1 - \mathbf{P}\{\tau \leqslant 2\} = 1 - (1 - e^{-2\lambda}) = e^{-2\lambda} = e^{-6} \approx 0,0025.$$

Поскольку $\mathbf{P}\{\tau \leq 2\} \approx 0.9975$, то почти наверняка в течение промежутка времени длиной в две минуты поступит хотя бы одна заявка на переговоры.

12.2. Вероятностное описание марковских случайных функций с дискретным множеством значений. Пусть $\{\xi(t),$ $t \geqslant 0$ — случайная функция, принимающая значения при каждом t из множества $E = \{x_0, x_1, \dots\}$. Далее без ограничения общности будем считать, что $x_k = k, k = 0, 1, \dots$

Определение 12.7. Случайная функция $\{\xi(t), t \ge 0\}$, принимающая значения из множества E, называется марковским процессом с непрерывным временем и дискретным множеством значе $nu\ddot{u}$, если для любых моментов $0\leqslant t_1\leqslant\ldots\leqslant t_{n-1}\leqslant s\leqslant t$ и значений $i_1, \ldots, i_{n-1}, i, j \in E$ выполнено

$$\mathbf{P}\{\xi(t) = j \mid \xi(s) = i, \xi(t_{n-1}) = i_{n-1}, \dots, \xi(t_1) = i_1\} =$$

$$= \mathbf{P}\{\xi(t) = j \mid \xi(s) = i\}.$$

Определение 12.8. Вероятностью перехода марковского процесса $\xi(t)$ называется функция

$$p_{ij}(s,t) = \mathbf{P}\{\xi(t) = j \mid \xi(s) = i\}, \tag{12.4}$$

где $i, j \in E, 0 \leqslant s \leqslant t$.

Замечание. Из определения 12.8 непосредственно следуют свойства вероятности перехода:

- 1) $\sum_{j\in E} p_{ij}(s,t)=1$ для всех $i\in E;$
- 2) $p_{ii}(t,t)=1$ для всех $i\in E;$ 3) $p_{ij}(t,t)=0$ при $i\neq j.$

Возможные значения процесса $\xi(t)$, т.е. элементы множества E, часто называют также cocmoshusmu процесса $\xi(t)$. Поэтому $p_{ii}(s,t)$ вероятность перехода ξ из состояния $i \in E$ в момент s в состояние

Определение 12.9. Вероятностью i-го состояния $\xi(t)$ в момент времени $t \geqslant 0$ называется величина

$$\pi_i(t) = \mathbf{P}\{\xi(t) = i\}, \quad i \in E.$$

Очевидно, что $\pi_i(t)\geqslant 0$ и $\sum_{i\in E}\pi_i(t)=1.$ Таким образом набор

 $\{\pi_i(t)\}$ образует распределение вероятностей состояний марковского процесса $\xi(t)$.

Между переходными вероятностями и вероятностями состояний имеется следующая связь.

Теорема 12.2. Пусть $0 \leqslant s \leqslant u \leqslant t$, тогда

$$p_{ij}(s,t) = \sum_{k \in E} p_{ik}(s,u) \, p_{kj}(u,t), \tag{12.5}$$

$$\pi_i(t) = \sum_{k \in E} \pi_k(s) \, p_{ki}(s, t). \tag{12.6}$$

Замечание. Соотношение (12.5) называется уравнением Колмогорова—Чепмена, общий вид которого был рассмотрен в п. 2.4.

Определение 12.10. Процесс $\xi(t)$ называется однородным, если $p_{ij}(s,s+t)=p_{ij}(0,t)$ для всех $s,t\geqslant 0$ и $i,j\in E$.

Предположим, что при каждом $s\geqslant 0$ переходная вероятность $p_{ij}(s,t)$ дифференцируема по t при любых $i,j\in E$.

Определение 12.11. Интенсивностью перехода $\lambda_{ij}(t)\geqslant 0$ из состояния i в состояние j в момент $t\geqslant 0$ называется величина

$$\lambda_{ij}(t) = \lim_{h \to 0} \frac{p_{ij}(t, t+h)}{h} = \left. \frac{\partial p_{ij}(t, u)}{\partial u} \right|_{u=t}, \quad i \neq j.$$
 (12.7)

Пример 12.5. Показать, что интенсивности переходов однородного процесса не зависят от времени.

Решение. В силу однородности $p_{ij}(t,t+h)=p_{ij}(0,h)$, поэтому получаем $\lambda_{ij}(t)=\lim_{h\to 0}\frac{p_{ij}(0,h)}{h}=\lambda_{ij}(0)=\mathrm{const.}$

Далее мы будем рассматривать только однородные процессы, поэтому основные обозначения принимают следующий вид:

$$\lambda_{ij}(t) = \lambda_{ij}, \qquad p_{ij}(s, s+t) = p_{ij}(t) \quad \forall s \geqslant 0.$$

Наибольший практический интерес при исследовании процессов описанного выше типа представляет вычисление вероятностей его состояний в любой момент t>0, если задано начальное распределение вероятностей состояний $\{\pi_0(0),\pi_1(0),\dots\}$. Соответствующий алгоритм и условия его применимости для однородного процесса сформулируем в виде теоремы.

 ${
m T}\,{
m e}\,{
m o}\,{
m p}\,{
m e}\,{
m m}\,{
m a}\,\,12.3.$ Eсли для каждого $i\in E$ выполнены условия:

1) $\sup_{k \in E} \lambda_{ki} < \infty$;

2)
$$\sup_{k \in E} \left| \frac{p_{ki}(h)}{h} - \lambda_{ki} \right| \to 0 \ npu \ h \to 0,$$

то $\pi(t) = \{\pi_0(t), \pi_1(t), \dots\}$ является решением системы дифференциальных уравнений Колмогорова:

$$\begin{cases}
\dot{\pi}_i(t) = \sum_{k \neq i} \lambda_{ki} \, \pi_k(t) - \pi_i(t) \sum_{k \neq i} \lambda_{ik}, & i \in E, \\
\pi_i(0) = \pi_i^0,
\end{cases}$$
(12.8)

причем с учетом условия нормировки

$$\sum_{i \in E} \pi_i(t) = 1$$

система (12.8) имеет при каждом $\pi(0)=\{\pi_0^0,\pi_1^0,\dots\}$ единственное решение.

 $3\,\mathrm{a}\,\mathrm{m}\,\mathrm{e}\,\mathrm{t}\,\mathrm{a}\,\mathrm{h}\,\mathrm{u}\,\mathrm{e}.$ Нетрудно видеть, что в случае конечности множества состояний E условия теоремы 12.3 выполнены.

Пример 12.6. Вычислить вероятности состояний пуассоновского процесса, используя уравнения Колмогорова.

Решение. Напомним, что $\eta(t)$ — число событий в простейшем потоке к моменту $t\geqslant 0$, причем $\eta(0)=0$. Из результатов предыдущего пункта следует, что $p_{ki}(h)\equiv 0$ при k>i, поэтому $\lambda_{ki}=0$. Если k=i-1, то

$$p_{i-1,i}(h) = \lambda h + o(h), \qquad \lambda_{i-1,i} = \lim_{h \to 0} \frac{\lambda h + o(h)}{h} = \lambda.$$

Если же k < i - 1, то

$$p_{ki}(h) = o(h),$$
 $\lambda_{ki} = \lim_{h \to 0} \frac{o(h)}{h} = 0.$

Теперь очевидно, что условия теоремы 12.3 выполнены. Отсюда

$$\begin{cases} \dot{\pi}_{0}(t) = -\lambda \pi_{0}(t), & \pi_{0}(0) = 1, \\ \dot{\pi}_{1}(t) = \lambda \pi_{0}(t) - \lambda \pi_{1}(t), & \pi_{1}(0) = 0, \\ \dot{\pi}_{2}(t) = \lambda \pi_{1}(t) - \lambda \pi_{2}(t), & \pi_{2}(0) = 0, \\ \dots & \dots & \dots \end{cases}$$
(12.9)

Сделаем в (12.9) замену переменных $\pi_i(t) = e^{-\lambda t} q_i(t)$:

$$\left\{ \begin{array}{ll} \dot{q}_{0}(t)=0, & q_{0}(0)=1, \\ \dot{q}_{1}(t)=\lambda q_{0}(t), & q_{1}(0)=0, \\ \dot{q}_{2}(t)=\lambda q_{1}(t), & q_{2}(0)=0, \end{array} \right.$$

Отсюда $q_0(t)=1,\ q_1(t)=\lambda t,\ q_2(t)=\frac{(\lambda t)^2}{2!},\ \dots,q_i(t)=\frac{(\lambda t)^i}{i!},\ \dots$ Следовательно, $\pi_i(t)=\exp\{-\lambda t\}\frac{(\lambda t)^i}{i!},\ i=0,1,2,\ \dots$ Заметим, что полученный результат согласуется с утверждением теоремы 12.1. \blacksquare

Пример 12.7. Предположим, что поток сбоев ЭВМ является простейшим с интенсивностью λ . Если ЭВМ дает сбой, то он немедленно обнаруживается и производится ремонт, который длится в течение случайного времени τ с распределением $E(\mu)$. Вычислить вероятность того, что в момент времени t ЭВМ находится в рабочем состоянии. Рассмотреть случай $t \to \infty$.

Решение. Состояние ЭВМ в момент t будем отождествлять со значением процесса $\xi(t) \in E = \{0,1\}$ ($\xi(t) = 0$ означает, что ЭВМ работает). Нетрудно заключить, что в силу свойств простейшего потока и свойства распределения $E(\mu)$ (см. пример 12.3) процесс $\xi(t)$ — марковский.

Приведем общий способ рассуждений при вычислении интенсивностей переходов на примере перехода из 0 в 1. Вероятность того, что на интервале [0,h] будет ровно один отказ, составляет

$$P_1 = \lambda h + o_1(h).$$

Вероятность того, что на произвольном малом интервале $[t,t+\Delta t]$ не будет закончен ремонт, равна

$$P_{2}(\Delta t)=e^{-\mu\Delta t}=1-\mu\Delta t+o_{2}(\Delta t)=1+O(\Delta t)\to 1\quad\text{при}\quad \Delta t\to 0.$$

Очевидно, что если $\Delta t \leqslant h$, то $P_2(\Delta t) \leqslant P_2(h) = 1 + O(h)$. Поэтому

$$\lambda h + o_1(h) \geqslant p_{01}(h) \geqslant (\lambda h + o_1(h))(1 + O(h)) + o_2(h),$$

где $o_2(h)$ — вероятность всех других мыслимых переходов из 0 в 1 на [0,h] (например, «отказ \to ремонт \to отказ» и т. д.). Итак, из полученных неравенств следует, что

$$p_{01}(h) = \lambda h + o(h),$$

так как $o_1(h)O(h) = o(h), o_1(h)o_1(h) = o(h).$ Отсюда

$$\lambda_{01} = \lim_{h \to 0} \frac{p_{01}(h)}{h} = \lambda.$$

Аналогичные рассуждения показывают, что $\lambda_{10} = \mu$. Тогда система уравнений Колмогорова принимает вид

$$\begin{cases} \dot{\pi}_0(t) = \mu \pi_1(t) - \lambda \pi_0(t), & \pi_0(0) = \alpha, \\ \dot{\pi}_1(t) = \lambda \pi_0(t) - \mu \pi_1(t), & \pi_1(0) = 1 - \alpha. \end{cases}$$
(12.10)

Подставляя $\pi_1(t) = 1 - \pi_0(t)$ в первое уравнение системы (12.10), получаем

$$\dot{\pi}_0(t) = -(\lambda + \mu)\pi_0(t) + \mu, \qquad \pi_0(0) = \alpha, \tag{12.11}$$

где α — вероятность того, что в момент t=0 ЭВМ исправна. Решая уравнение (12.11), получаем искомую вероятность:

$$\pi_0(t) = \alpha e^{-(\lambda+\mu)t} + \frac{\mu}{\lambda+\mu} \left(1 - e^{-(\lambda+\mu)t} \right). \tag{12.12}$$

В силу того что $\mu + \lambda > 0$, $e^{-(\lambda + \mu)t} \to 0$ при $t \to \infty$. Отсюда получаем

$$\widetilde{\pi}_0 = \lim_{t \to \infty} \pi_0(t) = \frac{\mu}{\mu + \lambda},$$

причем предел не зависит от α , т. е. от начального распределения. Очевидно также, что

$$\pi_1(t) = (1 - \alpha)e^{-(\lambda + \mu)t} + \frac{\lambda}{\lambda + \mu} \left(1 - e^{-(\lambda + \mu)t} \right) \to \widetilde{\pi}_1 = \frac{\lambda}{\lambda + \mu}, \quad t \to \infty.$$

Величины $\widetilde{\pi}_0 = \frac{\mu}{\lambda + \mu}$ и $\widetilde{\pi}_1 = 1 - \widetilde{\pi}_0 = \frac{\lambda}{\lambda + \mu}$ называются предельными вероятностями состояний процесса $\xi(t)$.

В рассмотренном примере предельные вероятности существуют и не зависят от начального распределения вероятностей. При определенных условиях предельные вероятности существуют и для более сложных однородных процессов. Соответствующие результаты обсуждаются в следующем пункте.

12.3. Эргодические свойства однородных марковских случайных функций.

Определение 12.12. Марковский процесс $\{\xi(t), t \geq 0\}$ называется эргодическим, если для любого начального распределения вероятностей состояний $\{\pi_k(0), k \in E\}$ существуют предельные вероятности

$$\widetilde{\pi}_k = \lim_{t \to \infty} \pi_k(t), \quad k \in E,$$
(12.13)

причем $\{\widetilde{\pi}_k,\ k\in E\}$ не зависят от $\{\pi_k(0),\ k\in E\}$ и удовлетворяют условиям

$$\widetilde{\pi}_k \geqslant 0, \quad \sum_{k \in E} \widetilde{\pi}_k = 1.$$
 (12.14)

При этом набор вероятностей $\{\widetilde{\pi}_k, k \in E\}$ называется стационарным распределением процесса $\xi(t)$.

Следующее утверждение содержит достаточные условия эргодичности однородного процесса $\xi(t)$.

Теорема 12.4. Если существуют состояние $j_0 \in E$ и конечное время t, такие, что одновременно для всех $i \in E, i \neq j_0$ выполнено условие

$$p_{ij_0}(t) \geqslant \delta \tag{12.15}$$

для некоторого $\delta>0,$ то процесс $\xi(t)$ — эргодический.

Замечание. Можно доказать, что в случае конечного множества состояний E условие (12.15) будет выполнено, если состояния процесса — сообщающиеся (см. пп. 5.2, 5.3).

Теорема 12.4 не дает конструктивного способа вычисления предельных вероятностей (стационарного распределения) $\{\tilde{\pi}_k\}$. Однако если справедливы условия теоремы 12.3, позволяющие использовать уравнения Колмогорова, мы получаем систему алгебраических уравнений для непосредственного вычисления стационарного распределения $\{\tilde{\pi}_k\}$.

Теорема 12.5. Пусть выполнены условия теорем 12.3, 12.4, тогда стационарное распределение $\{\widetilde{\pi}_k, k \in E\}$ существует и удовлетворяет системе алгебраических уравнений Колмогорова

$$\begin{cases}
\sum_{k \neq i} \lambda_{ki} \widetilde{\pi}_k - \widetilde{\pi}_i \sum_{k \neq i} \lambda_{ik} = 0, & i \in E, \\
\sum_{i \in E} \widetilde{\pi}_i = 1,
\end{cases}$$
(12.16)

причем решение системы (12.16) единственно.

Замечания. 1) Система уравнений (12.16) получается из системы дифференциальных уравнений (12.8), если положить $\dot{\pi}_i(t)=0,$ $\pi_i(t)=\widetilde{\pi}_i,\,i\in E.$

2) Условия теоремы 12.5 выполнены, если процесс $\xi(t)$ имеет конечное число сообщающихся состояний.

 Π ример 12.8. В условиях примера 12.7 найти $\widetilde{\pi}_0$ и $\widetilde{\pi}_1$, не вычисляя $\pi_0(t)$ и $\pi_1(t)$.

Решение. Рассматриваемый процесс имеет два состояния (т.е. $E=\{0,1\}$), которые при $\lambda>0$ и $\mu>0$ являются сообщающимися. Поэтому мы можем воспользоваться теоремой 12.5 с учетом $\lambda_{01}=\lambda,$ $\lambda_{10}=\mu$:

$$\begin{cases}
-\lambda \widetilde{\pi}_0 + \mu \widetilde{\pi}_1 &= 0, \\
\lambda \widetilde{\pi}_0 - \mu \widetilde{\pi}_1 &= 0, \\
\widetilde{\pi}_0 + \widetilde{\pi}_1 &= 1.
\end{cases}$$

Видно, что первое и второе уравнения совпадают, поэтому следует выбрать одно из них и решить его с учетом третьего уравнения

(условия нормировки):

$$-\lambda \widetilde{\pi}_0 - \mu (1 - \widetilde{\pi}_0) = 0.$$

Отсюда $\tilde{\pi}_0 = \frac{\mu}{\lambda + \mu}$, а $\tilde{\pi}_1 = 1 - \tilde{\pi}_0 = \frac{\lambda}{\lambda + \mu}$. Полученный результат совпадает с соответствующим результатом примера 12.7.

Для практического составления уравнений Колмогорова (12.8), (12.16) удобно пользоваться графическим представлением процесса в виде *стохастического графа* (см. п. 5.1). Вершинами графа являются состояния процесса, стрелками указываются возможные переходы, а рядом с каждой стрелкой указывается соответствующая интенсивность перехода (рис. 12.1).

Рис. 12.1

Пример 12.9. Простейший поток заявок интенсивности λ поступает в систему массового обслуживания, состоящую из двух параллельно работающих каналов. Время обслуживания в первом и втором каналах имеет распределение соответственно $E(\mu_1)$ и $E(\mu_2)$. Предположим, что обслуживание в каналах происходит независимым образом, а заявка выбирает для обслуживания канал случайным равновероятным образом, если оба канала свободны. Построить стохастический граф процесса обслуживания $\xi(t)$ и найти стационарные ве-

роятности его состояний (сделать расчет для случая $\mu_1=\mu_2$). Решение. Процесс $\xi(t)$, описывающий работу системы, имеет

Решение. Процесс $\xi(t)$, описывающий работу системы, имеет четыре возможных состояния:

$$\xi(t) = \left\{ \begin{array}{ll} 0, & \text{если в системе нет ни одной заявки,} \\ 1, & \text{если первый канал занят, а второй свободен,} \\ 2, & \text{если первый канал свободен, а второй занят,} \\ 3, & \text{если оба канала заняты.} \end{array} \right.$$

Проведем расчет интенсивностей возможных переходов. Пусть гипотеза H_i состоит в том, что выбран i-й канал, где i=1,2. Тогда по условию $\mathbf{P}\{H_1\}=\mathbf{P}\{H_2\}=1/2$. Пусть h>0 — малый интервал времени, тогда $p_{01}(h)=(\lambda h+o(h))\mathbf{P}\{H_1\}$. Отсюда

$$\lambda_{01} = \lim_{h \to 0} \frac{p_{01}(h)}{h} = \frac{\lambda}{2}.$$

Аналогично, $p_{02}(h)=\frac{\lambda}{2}$. Очевидно, что $p_{03}(h)=o(h)$, поэтому $\lambda_{03}=0$. Далее, используя рассуждения из примера 12.7, получаем $p_{13}(h)==\lambda h+o(h)$, т. е. $\lambda_{13}=\lambda$, $p_{12}(h)=o(h)$ и $\lambda_{12}=0$. Аналогично, $\lambda_{23}=\lambda$. Указанные переходы вызваны поступлением заявок в систему.

Рассмотрим теперь переходы, вызванные завершением обслуживания заявок: $p_{10}(h)=(\mu_1 h+o(h))(1-\lambda h+o(h))=\mu_1 h+o(h)$, поэтому

 $\lambda_{10}=\mu_1$. Здесь учтено, что для перехода из состояния 1 в состояние 0 на интервале длины h необходимо, чтобы на этом интервале обслуживание закончилось и не поступило ни одной новой заявки. Аналогично, $p_{20}(h)=\mu_2 h+o(h)$ и $\lambda_{20}=\mu_2$. Если заняты оба канала, то $p_{31}(h)=(\mu_2 h+o(h))(1-\mu_1 h+o(h))=$ $=\mu_2 h+o(h)$, т. е. $\lambda_{31}=\mu_2$. Для перехода $3\to 2$ справедливо $p_{32}(h)=\mu_1 h+o(h)$ и $\lambda_{32}=\mu_1$. Все прочие переходы имеют

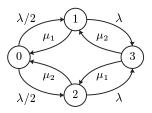


Рис. 12.2

нулевые интенсивности. Теперь мы можем построить стохастический граф процесса $\xi(t)$ (рис. 12.2).

Для определения стационарных вероятностей воспользуемся системой уравнений Колмогорова (12.16):

$$\begin{cases}
\mu \widetilde{\pi}_{1} + \mu_{2} \widetilde{\pi}_{2} - \lambda \widetilde{\pi}_{0} &= 0, \\
0.5 \lambda \widetilde{\pi}_{0} + \mu_{2} \widetilde{\pi}_{3} - (\lambda + \mu_{1}) \widetilde{\pi}_{1} &= 0, \\
0.5 \lambda \widetilde{\pi}_{0} + \mu_{1} \widetilde{\pi}_{3} - (\lambda + \mu_{2}) \widetilde{\pi}_{2} &= 0, \\
\lambda (\widetilde{\pi}_{1} + \widetilde{\pi}_{2}) - (\mu_{1} + \mu_{2}) \widetilde{\pi}_{3} &= 0, \\
\widetilde{\pi}_{0} + \widetilde{\pi}_{1} + \widetilde{\pi}_{2} + \widetilde{\pi}_{3} &= 1.
\end{cases} (12.17)$$

Если $\mu_1=\mu_2=\mu$, то из (12.17) следует $\widetilde{\pi}_1=\widetilde{\pi}_2,\,\widetilde{\pi}_1+\widetilde{\pi}_2=\frac{\lambda}{\mu}\widetilde{\pi}_0$. Кроме того, $\widetilde{\pi}_3=\frac{\lambda}{2\mu}(\widetilde{\pi}_1+\widetilde{\pi}_2)=\frac{\lambda^2}{2\mu^2}\widetilde{\pi}_0$. Теперь, используя условие нормировки и обозначение $\rho=\frac{\lambda}{\mu}$, получаем

$$\widetilde{\pi}_0 = \left(1 + \rho + \frac{\rho^2}{2}\right)^{-1},$$

откуда $\widetilde{\pi}_1 = \widetilde{\pi}_2 = \frac{\rho}{2}\widetilde{\pi}_0$, $\widetilde{\pi}_3 = \frac{\rho^2}{2}\widetilde{\pi}_0$. Если, например, $\lambda = \mu$, то $\widetilde{\pi}_0 = 2/5$, $\widetilde{\pi}_1 = \widetilde{\pi}_2 = \widetilde{\pi}_3 = 1/5$.

12.4. Процессы рождения и гибели. Рассматриваемый ниже специальный класс марковских процессов имеет большое значение при исследовании систем массового обслуживания.

Определение 12.13. Однородная марковская случайная функция $\{\xi(t),\,t\geqslant 0\}$ называется процессом рождения и гибели, если ее

стохастический граф имеет вид, представленный на рис. 12.3.

Далее мы будем рассматривать случай $N<\infty$, так как при решении практических задач N всегда может быть выбрано столь большим, что построенная модель исследуемой системы будет адекватной.

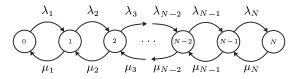


Рис. 12.3

Теорема 12.6. Если $\{\xi(t), t \geq 0\}$ — однородный процесс рождения и гибели, то стационарное распределение $\{\widetilde{\pi}_n\}_{n=0}^N$ существует, единственно и определяется соотношениями

$$\begin{cases}
\widetilde{\pi}_{0} = \left(1 + \frac{\lambda_{1}}{\mu_{1}} + \frac{\lambda_{1}\lambda_{2}}{\mu_{1}\mu_{2}} + \dots + \frac{\lambda_{1}\lambda_{2}\dots\lambda_{N}}{\mu_{1}\mu_{2}\dots\mu_{N}}\right)^{-1}, \\
\widetilde{\pi}_{n} = \frac{\lambda_{n}}{\mu_{n}}\widetilde{\pi}_{n-1}, \quad n = 1, 2, \dots, N.
\end{cases} (12.18)$$

Замечания. 1) Формулы (12.18) дают аналитическое решение соответствующей системы стационарных уравнений Колмогорова.

2) Если считать, что $\xi(t)$ при любом $t\geqslant 0$ численно равно количеству членов некоторой популяции, где N — максимально возможное число ее членов, то из определения 12.13 следует, что λ_n — интенсивность рождения при условии, что в популяции имеется n-1 член, а μ_n — интенсивность гибели при условии, что в популяции имеется n членов.

Пример 12.10. Пусть интенсивности рождения и гибели таковы, что $\lambda_n = n\lambda$, $\mu_n = n\mu$, $n \leq N$. Найти стационарные вероятности состояний и сравнить их между собой для различных λ и μ .

яний и сравнить их между собой для различных λ и μ . Решение. Пусть $\rho=\frac{\lambda_n}{\mu_n}=\frac{\lambda}{\mu}$. Из (12.18) следует, что при $\lambda\neq\mu$, т. е. при $\rho\neq1$

$$\widetilde{\pi}_0 = (1 + \rho + \rho^2 + \dots + \rho^N)^{-1} = \frac{1 - \rho}{1 - \rho^{N+1}},$$
(12.19)

так как $\sum_{n=0}^{N} \rho^n = \frac{1-\rho^{N+1}}{1-\rho}$ по формуле суммирования для геометрической прогрессии. Далее, по формулам (12.18) выражаем все вероят-

ности $\widetilde{\pi}_n$, $n \geqslant 1$ через $\widetilde{\pi}_0$:

$$\widetilde{\pi}_n = \rho \widetilde{\pi}_{n-1} = \rho^n \widetilde{\pi}_0, \quad n = 1, 2, \dots, N.$$
 (12.20)

Рассмотрим случай $\lambda>\mu$. Это означает, что $\rho>1$ и, следовательно, $\widetilde{\pi}_n>\widetilde{\pi}_{n-1}$. Таким образом,

$$\widetilde{\pi}_N = \max\{\widetilde{\pi}_0, \dots, \widetilde{\pi}_N\} = \frac{1-\rho}{1-\rho^{N+1}} \rho^N \to \frac{\rho-1}{\rho} \quad \text{при} \quad N \to \infty,$$

$$\widetilde{\pi}_0 = \min\{\widetilde{\pi}_0, \dots, \widetilde{\pi}_N\} = \frac{1-\rho}{1-\rho^{N+1}} \to 0 \quad \text{при} \quad N \to \infty.$$

Следовательно, в случае $\lambda > \mu$ популяция имеет тенденцию к развитию, а ее гибель при больших N маловероятна.

Пусть теперь $\lambda < \mu$, тогда $\rho < 1$ и ситуация меняется на противоположную: $\widetilde{\pi}_0 > \widetilde{\pi}_1 > \ldots > \widetilde{\pi}_N$, причем $\widetilde{\pi}_0 \to 1 - \rho > 0$ при $N \to \infty$, а $\widetilde{\pi}_N \to 0$ при $N \to \infty$. Итак, в этом случае популяция имеет тенденцию к деградации и гибели (например, если $2\lambda = \mu$, то $\rho = 1/2$ и $\mathbf{P}\{\xi(t) = 0\} \approx 1/2$ при $t \gg 1$ и $N \to \infty$).

Наконец, если $\lambda = \mu$, то в силу $\rho = 1$ имеем $\widetilde{\pi}_0 = \widetilde{\pi}_1 = \ldots = \widetilde{\pi}_N = \frac{1}{N+1}$, т. е. предельное распределение является равномерным дискретным. В этом случае состояние популяции является максимально неопределенным.

Рассмотрим пример использования модели рождения и гибели для исследования системы массового обслуживания с ожиданием и несколькими параллельными каналами обслуживания.

Пример 12.11. Пусть система обслуживания устроена так:

- 1) на вход поступает простейший поток заявок интенсивности λ ;
- 2) в системе одновременно пребывает не более N заявок;
- 3) обслуживание заявок ведут s независимых каналов, причем время обслуживания в каждом канале случайно и распределено по экспоненциальному закону с параметром μ ;
- 4) если все s каналов заняты, то заявка может занять одно из N-s мест в очереди и ожидать обслуживания неограниченно долго (если есть хотя бы одно свободное место в очереди).

Требуется:

- а) показать, что процесс $\{\xi(t),\ t\geqslant 0\}$, где $\xi(t)$ число заявок в системе в момент t, является процессом рождения и гибели;
 - б) построить стохастический граф процесса;
 - в) найти стационарные распределения вероятностей состояний;
- г) вычислить среднее число заявок, находящихся в системе, и среднюю длину очереди (рассмотреть случай $N \to \infty$).

Решение. Пусть $\xi(t)=n$ означает, что в системе обслуживания в момент t находится n заявок, $n=0,1,\ldots,N$. Если $n\leqslant s$, то в очереди все места свободны. Если же $s< n\leqslant N$, то s заявок проходят обслуживание, а n-s ожидают обслуживания в очереди. Рассмотрим состояние $i\neq 0,N$. Тогда для h>0

$$p_{i,i+1}(h) = (\lambda h + o(h))(1 - \mu h + o(h))^r,$$

где $r=\min(i,s)$ — число занятых каналов обслуживания. Отсюда $p_{i,i+1}(h)=\lambda h+o(h)$, поэтому $\lambda_{i+1}=\lambda_{i,i+1}=\lambda$;

$$p_{i,i-1}(h) = (1 - \lambda h + o(h)) \sum_{i=1}^{r} (\mu h + o(h)) (1 - \mu h + o(h))^{r-1} = r(\mu h + o(h)).$$

Итак, $\mu_i=\lambda_{i,i-1}=r\mu$, где $r=\min(i,s)$. Если i=0, то $\mu_0=0$, а $\lambda_0=\lambda$. Если же i=N, то $\mu_N=s\mu$ и $\lambda_N=0$.

Стохастический граф процесса $\xi(t)$ представлен на рис. 12.4.

Применяя соотношения (12.18), получаем

$$\widetilde{\pi}_{n} = \begin{cases} \left(\sum_{k=0}^{s} \frac{\rho^{k}}{k!} + \frac{\rho^{s}}{s!} \sum_{k=1}^{N-s} (\gamma_{s})^{k} \right)^{-1}, & \text{если} \quad n = 0, \\ \frac{\rho^{n}}{n!} \widetilde{\pi}_{0}, & \text{если} \quad n = 1, \dots, s, \\ \frac{\rho^{n}}{s! s^{n-s}} \widetilde{\pi}_{0}, & \text{если} \quad n = s+1, \dots, N. \end{cases}$$
(12.21)

где $\rho = \lambda/\mu$, $\gamma_s = \rho/s$.

Пусть число заявок в системе равно L, тогда $\mathbf{M}\{L\} = \sum_{n=0}^N n \widetilde{\pi}_n$ есть среднее число заявок в системе в стационарном режиме (т. е. при $t \to \infty$). Если L_q — число заявок в очереди, то $\mathbf{M}\{L_q\} = \sum_{n=0}^{N-s} n \widetilde{\pi}_{n+s}$ — средняя длина очереди.

Дальнейшие упрощения возможны при конкретном задании параметров $s,\ N$ и $\rho.$

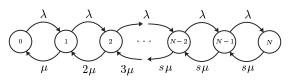


Рис. 12.4

Пример 12.12. Пусть выполнены условия примера 12.11 и, дополнительно, $\lambda=\mu$ (т. е. интенсивности поступления и обслуживания заявок одинаковы). Сравнить средние длины очередей для случаев s=1 (один канал обслуживания) и s=2 (два канала обслуживания) в предположении $N\to\infty$.

Решение. Пусть сначала s=2, тогда из предыдущего примера следует (с учетом $\rho=\lambda/\mu=1$):

$$\widetilde{\pi}_0 = \left\{ 1 + 1 + \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{N-2}} \right) \right\}^{-1} =$$

$$= \left\{ 1 + \sum_{n=0}^{N-1} \frac{1}{2^n} \right\}^{-1} = \left\{ 1 + \frac{1 - 1/2^N}{1 - 1/2} \right\}^{-1} \approx \frac{1}{3} \quad \text{при} \quad N > 50.$$

По формулам (12.21) $\widetilde{\pi}_n = \frac{\widetilde{\pi}_0}{2^{n-1}}, \ n=1,2,\ldots,N$. Отсюда

$$\mathbf{M}\{L_q\} = \widetilde{\pi}_3 + 2\widetilde{\pi}_4 + \ldots + (N-2)\widetilde{\pi}_N = \frac{\widetilde{\pi}_0}{2^2} \sum_{n=1}^{N-2} \frac{n}{2^{n-1}}.$$

При $0 < \alpha < 1$ имеем

$$\sum_{n=1}^{N-2} n\alpha^{n-1} = \frac{d}{d\alpha} \left(\sum_{n=0}^{N-2} \alpha^n \right) = \frac{d}{d\alpha} \left(\frac{1 - \alpha^{N-1}}{1 - \alpha} \right) \approx \frac{1}{(1 - \alpha)^2}.$$

Поэтому при $\alpha = 1/2$ получаем

$$\mathbf{M}\{L_q\} = \widetilde{\pi}_0 \alpha^2 \sum_{n=1}^{N-2} n \alpha^{n-1} \approx 1/3.$$

Если же s=1 и $\rho=\lambda/\mu=1,$ то распределение процесса будет равномерным:

$$\widetilde{\pi} = \left\{ \frac{1}{N+1}, \dots, \frac{1}{N+1} \right\}^*.$$

При этом

$$\mathbf{M}\{L_q\} = \widetilde{\pi}_2 + 2\,\widetilde{\pi}_3 + \ldots + (N-1)\,\widetilde{\pi}_N = \frac{1}{N+1}\sum_{n=1}^{N-1} n = \frac{(N-1)N}{(N+1)\,2} \approx \frac{N}{2}.$$

Таким образом, если s=1, то $\mathbf{M}\{L_q\}\to\infty$ при $N\to\infty$, т.е. средняя длина очереди неограниченно возрастает. Это является неожиданным результатом, так как предположение $\lambda=\mu$ о равенстве интенсивностей поступления и обслуживания заявок не выглядит угрожающим. Если же s=2, то $\mathbf{M}\{L_q\}\to 1/3$ при $N\to\infty$. Последний результат представляет несомненный практический интерес, так как показывает, что увеличение пропускной способности каналов обслуживания в 2 раза приводит не просто к уменьшению очереди (в 2 раза), но фактически к ее ликвидации.

12.5. Задачи для самостоятельного решения.

1. Пусть $\{\xi(t),\ t\geqslant 0\}$ — марковская однородная случайная функция с дискретным пространством состояний. Доказать, что $\{\eta_n,\ n=0,1,2,\ldots\}$, где $\eta_n=\xi(n)$ является дискретной цепью Маркова, и найти ее переходную матрицу.

2. Пусть поток событий $\nu(t)$ получен наложением n независимых простейших потоков $\xi_k(t),\ k=1,\ldots,n$ с интенсивностями $\{\lambda_k,\ k=1,\ldots,n\}$.

доказать, что
$$\nu(t)$$
 — простейший поток с интенсивностью $\lambda = \sum_{k=1}^{n} \lambda_k$.

У казание. Проверить однородность, ординарность и отсутствие последействия для $\nu(t)$.

3. Частица блуждает по целым точкам действительной оси под воздействием двух независимых простейших потоков с интенсивностями λ и μ следующим образом: если до момента t частица находилась в состоянии n, а в момент t произошло событие из первого потока, то в этот момент частица скачком перемещается в точку n+1. Второй поток аналогичным образом перемещает частицу в состояние n-1. Вычислить вероятность того, что очередное перемещение будет совершено из n в n+1.

Ответ.
$$\frac{\lambda}{\lambda + \mu}$$
.

4. В условиях примера 12.7 вычислить точно вероятность перехода $p_{01}(h)$ для произвольных $\lambda>0,\,\mu>0$ и показать, что $p_{01}(h)=\lambda h+o(h)$.

Ответ.
$$p_{01}(h) = \begin{cases} \frac{\lambda}{\mu - \lambda} \left(e^{-\lambda h} - e^{-\mu h} \right) & \text{при } \lambda \neq \mu, \\ \lambda h e^{-\lambda h} & \text{при } \lambda = \mu. \end{cases}$$

5. Процесс $\xi(t)$ покидает состояние $i \in E$ под воздействием n независимых простейших потоков с интенсивностями $\lambda_k,\ k=1,\dots,n$. Какова вероятность того, что $\xi(t)$ останется в состоянии i в течение промежутка времени T>0?

емени
$$T>0$$
:
Ответ. $e^{-\lambda T}$, где $\lambda=\sum_{k=1}^n \lambda_k$.

6. Поток событий является однородным и не имеет последействия. Величина длины интервала времени между двумя последовательными событиями имеет экспоненциальное распределение $E(\lambda),\ \lambda>0$. Доказать, что данный поток — простейший.

Указание. Проверить свойство ординарности потока.

7. Поток отказов прибора — простейший с интенсивностью λ . Если прибор отказал, то отказ обнаруживается в течение случайного времени, имеющего распределение $E(\nu)$. Ремонт осуществляется после обнаружения отказа и продолжается случайное время с распределением $E(\mu)$. Найти стационарную вероятность того, что прибор исправен.

Ответ.
$$\frac{\nu\mu}{\nu\mu + \lambda\nu + \lambda\mu}.$$

8. Доказать, что однородная марковская случайная функция с конечным числом сообщающихся состояний всегда имеет стационарное распределение вероятностей.

Указание. Проверить выполнение условий теоремы 12.5.

9. Система массового обслуживания состоит из двух одинаковых каналов обслуживания с интенсивностями $\mu>0$, работающих параллельно. Входной поток заявок — простейший пуассоновский поток с интенсивностью λ . Найти дифференциальное уравнение, которому удовлетворяет вероятность $\pi(t)$ того, что оба канала заняты. Вычислить стационарную вероятность $\widetilde{\pi}=\lim_{t\to\infty}\pi(t)$ этого состояния.

Ответ.
$$\widetilde{\pi} = \frac{\lambda^2}{\lambda^2 + 2\mu^2 + 2\lambda\mu}$$
.

10. Пусть выполнены условия задачи 9, однако каналы обслуживают заявки последовательно. Вычислить стационарную вероятность того, что система простаивает.

Oтвет.
$$\frac{\mu^2}{(\lambda + \mu)^2}$$
.

11. Одноканальная система массового обслуживания с интенсивностью обслуживания μ и простейшим потоком заявок интенсивности λ имеет неограниченное число мест в очереди. Пусть $\xi(t)$ — число заявок, находящихся в системе в момент времени t. При каких λ и μ существует стационарное распределение вероятностей состояний процесса $\xi(t)$? Найти это распределение и определить среднюю длину очереди.

о распределение и определить среднюю длин
Ответ.
$$\lambda < \mu, \ \mathbf{M}\{L_q\} = \frac{\rho^2}{1-\rho}, \ \text{где } \rho = \frac{\lambda}{\mu}.$$

 ${\bf 12.} \ {\rm B} \ {\rm условияx} \ {\rm задачи} \ 11$ найти закон распределения времени T_q пребывания заявки в очереди.

Ответ.
$$P\{T_q > t\} = \rho \exp\{-(\mu - \lambda)t\}.$$

ГЛАВА IV

МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

В данной главе приводятся необходимые сведения из курсов функционального анализа и теории вероятностей, а также справочные сведения, используемые для вычисления специальных интегралов.

§ 13. Необходимые сведения из функционального анализа

13.1. Алгебры и σ -алгебры множеств.

Определение 13.1. Система \mathcal{A} подмножеств некоторого множества X называется алгеброй, если

- 1) $\varnothing, X \in \mathcal{A}$;
- 2) $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}, A \cap B \in \mathcal{A}$;
- 3) $A \in \mathcal{A} \implies X \setminus A = \overline{A} \in \mathcal{A}$.

3)
$$A \in \mathcal{A} \implies A \setminus A = A \in \mathcal{A}$$
. Свойство 2 выполнено для любого конечного набора подмножеств, т. е. если $A_k \in \mathcal{A}, \ k = 1, \dots, n$, то $\bigcup_{k=1}^n A_k \in \mathcal{A}, \ \bigcap_{k=1}^n A_k \in \mathcal{A}$.

Определение 13.2. Алгебра ${\mathcal A}$ называется σ -алгеброй, если

$$A_n \in \mathcal{A}, \ n = 1, 2, \dots \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}, \ \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}.$$

Определение 13.3. Множество X вместе с некоторой σ -алгеброй его подмножеств ${\cal A}$ называется uзмеримым пространством и обозначается $\{X, A\}$.

На одном и том же множестве X могут быть заданы различные σ -алгебры его подмножеств. Примерами σ -алгебр являются системы множеств

$$\mathcal{A}_0 = \{\varnothing, X\}, \qquad \mathcal{A}^0 = \{A \colon A \subseteq X\}.$$

При этом \mathcal{A}_0 — самая «бедная» σ -алгебра, называемая mpивиальной, а $\mathcal{A}^{ar{0}}$ — самая «богатая» σ -алгебра, состоящая из всех подмножеств X.

Теорема 13.1. Пусть на множестве X задана некоторая система его подмножеств \mathcal{D} . Тогда существует наименьшая σ -алгебра, обозначаемая $\sigma(\mathcal{D})$, содержащая все множества из \mathcal{D} .

Система $\sigma(\mathcal{D})$ является наименьшей в том смысле, что если \mathcal{A} любая σ -алгебра подмножеств X, содержащая систему \mathcal{D} , то $\sigma(\mathcal{D}) \subseteq \mathcal{A}$.

Замечания. 1) Систему множеств $\sigma(\mathcal{D})$ называют σ -алгеброй, порожденной системой множеств \mathcal{D} .

2) Если $\{\mathcal{A}_{\alpha}\}$ — произвольное семейство σ -алгебр на X, то $\mathcal{A}=\bigcap \mathcal{A}_{\alpha}$ также является σ -алгеброй. Очевидно, что $\sigma(\mathcal{D})=\bigcap \mathcal{A}_{\alpha}$, где $\{\mathcal{A}_{\alpha}^{\vec{n}}\}$ — семейство всех σ -алгебр, содержащих систему множеств $\mathcal{D}.$

13.2. Меры (определения и свойства).

Определение 13.4. Пусть на множестве X задана некоторая алгебра его подмножеств \mathcal{A} . Функция $\mu(A)$, определенная на множествах $A \in \mathcal{A}$, называется мерой, заданной на \mathcal{A} , если

- а) $\mu(A) \geqslant 0$ для всех $A \in \mathcal{A}$;
- б) для любого счетного набора попарно непересекающихся множеств $A_n\in\mathcal{A},\,n=1,2,\,\ldots,\,$ (т. е. $A_i\cap A_j,\,i\neq j$), таких, что $\bigcup_{n=1}^\infty A_n\in\mathcal{A}$ выполнено свойство счетной аддитивности (σ -аддитивности):

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \sum_{n=1}^{\infty} \mu(A_n).$$

Мера μ называется конечной, если дополнительно выполнено условие

B) $\mu(X) < \infty$.

Мера μ , заданная на алгебре \mathcal{A} , обладает следующими свойствами:

- 1) $\mu(\emptyset) = 0$.
- (2) $\mu(A) \leqslant \mu(B)$ для $A, B \in \mathcal{A}$, таких, что $A \subseteq B$.
- 3) $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$ для всех $A, B \in \mathcal{A}$. 4) Если $A_n \in \mathcal{A}, \ n=1,2,\ldots$ убывающая последовательность

множеств, т.е. $A_1\supseteq A_2\supseteq\dots$, такая, что $\mu(A_1)<\infty$ и $\bigcap_{n=1}^\infty A_n\in\mathcal{A}$, то

$$\mu\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \mu(A_n).$$

5) Если $A_n \in \mathcal{A}, \ n=1,2,\ldots$ — возрастающая последовательность множеств, т. е. $A_1\subseteq A_2\subseteq\ldots$, такая, что $\bigcup_{n=1}^\infty A_n\in\mathcal{A}$, то

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \mu(A_n).$$

Замечание. Если на алгебре \mathcal{A} задана функция множества μ , обладающая свойством $a\partial dumu$ вности:

$$A, B \in \mathcal{A}, A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B),$$

то для доказательства того, что μ является мерой на \mathcal{A} , достаточно проверить свойство 4 для случая, когда $\bigcap_{n=1}^{\infty}A_n=\varnothing$, т. е. $\mu(A_n)\to 0$ при $n\to\infty$.

Следующий результат является одним из наиболее важных результатов теории меры.

Теорема 13.2 (Каратеодори). Пусть X — некоторое множество, \mathcal{A} — алгебра его подмножеств и μ_0 — мера на \mathcal{A} . Если существует последовательность множеств $X_n \in \mathcal{A}$, таких, что

$$\mu_0(X_n) < \infty, \qquad X = \bigcup_n X_n,$$
 (13.1)

то существует, и притом единственная, мера μ , определенная на $\sigma(\mathcal{A})$, являющаяся продолжением μ_0 , т. е. такая, что

$$\mu(A) = \mu_0(A) \quad \forall A \in \mathcal{A}.$$

Замечание. Очевидно, что для конечной меры условие (13.1) выполнено.

Определение 13.5. Множество X вместе с мерой μ , определенной на некоторой σ -алгебре \mathcal{A} , называется пространством с мерой и обозначается $\{X, \mathcal{A}, \mu\}$.

Всякую σ -алгебру \mathcal{A} можно пополнить множествами вида $A \cup N$, где $A \in \mathcal{A}$, а $N \subset A_0$ для некоторого $A_0 \in \mathcal{A}$, имеющего нулевую меру: $\mu(A_0) = 0$. Нетрудно проверить, что система множеств $\widetilde{\mathcal{A}}$, содержащая множества указанного вида, также является σ -алгеброй. Пространство с мерой $\{X, \widetilde{\mathcal{A}}, \mu\}$ называется *полным*.

Определение 13.6. Пусть $\{X, \mathcal{A}, \mu\}$ — полное пространство с мерой. Если некоторое свойство \mathcal{P} выполняется для всех $x \in X_0 \subseteq X$, где $\mu(X \setminus X_0) = 0$, то мы будем говорить, что свойство \mathcal{P} выполнено почти всюду (по мере μ).

13.3. Способы задания мер. Следующие примеры измеримых пространств являются наиболее важными для теории вероятностей и случайных процессов.

Дискретное измеримое пространство. Пусть множество $X = \{x_1, x_2, \dots\}$ не более чем счетно, а $\mathcal{A} - \sigma$ -алгебра всех подмножеств X. Всякая мера μ на дискретном измеримом пространстве

 $\{X, \mathcal{A}\}$ задается числами $\mu_n = \mu(\{x_n\}) \geqslant 0$:

$$\mu(A) = \sum_{n \colon x_n \in A} \mu_n,$$

где $A \in \mathcal{A}$ — любое подмножество X. Мера μ конечна, если

$$\mu(X) = \mu\left(\bigcup_{n=1}^{\infty} \{x_n\}\right) = \sum_{n=1}^{\infty} \mu(\{x_n\}) = \sum_{n=1}^{\infty} \mu_n < \infty.$$

Измеримое пространство $\{\mathbb{R}^1, \mathcal{B}(\mathbb{R}^1)\}$. Пусть $X = \mathbb{R}^1$ — действительная прямая, а $\langle a, b \rangle$ — промежуток, т. е. одно из множеств вида

где $-\infty\leqslant a\leqslant b\leqslant\infty$. Обозначим $\mathcal A$ систему подмножеств $A\subseteq\mathbb R^1$, состоящих из конечных объединений непересекающихся промежутков:

$$A = \bigcup_{i=1}^{n} \langle a_i, b_i \rangle, \quad n < \infty.$$
 (13.2)

Очевидно, что система A образует алгебру, но не является σ -алгеброй.

Определение 13.7. σ -алгебра, порожденная системой \mathcal{A} , обозначается $\mathcal{B}(\mathbb{R}^1)$ и называется борелевской σ -алгеброй множеств действительной прямой, а ее элементы — борелевскими множествами.

Аналогично вводится измеримое пространство $\{[a,b], \mathcal{B}([a,b])\}$, где $\mathcal{B}([a,b])$ состоит из множеств $B\subseteq [a,b]$, таких, что $B\in \mathcal{B}(\mathbb{R}^1)$. Система $\mathcal{B}([a,b])$ называется борелевской σ -алгеброй отрезка [a,b].

Определение 13.8. *Мерой Лебега на* \mathbb{R}^1 называется мера λ , определенная на $\{\mathbb{R}^1, \mathcal{B}(\mathbb{R}^1)\}$, такая, что

$$\lambda(\langle a, b \rangle) = b - a$$

для всех $-\infty \leqslant a \leqslant b \leqslant \infty$.

Из теоремы 13.2 следует, что мера Лебега на \mathbb{R}^1 существует и единственна. Отметим, что мера Лебега на \mathbb{R}^1 не является конечной, так как $\lambda(\mathbb{R}^1) = \infty$.

Конечная мера на борелевской σ -алгебре прямой или отрезка может быть задана с помощью функции распределения, которая определяется следующим образом.

Определение 13.9. Функция $F(x), x \in \mathbb{R}^1$, называется функцией pacnpedenenus на \mathbb{R}^1 , если она обладает следующими свойствами:

$$1)\ F(x)$$
— неубывающая функция; $2)\ F(-\infty)=\lim_{x\to -\infty}F(x)=0,\ F(+\infty)=\lim_{x\to +\infty}F(x)<\infty;$

3) F(x) непрерывна справа, т.е. $\lim_{h\to +0}F(x+h)=F(x)$ для всех $x\in\mathbb{R}^1.$

Замечание. Для функции распределения на отрезке [a,b] свойство 2 принимает вид

$$F(a) = \lim_{x \to a} F(x) = 0,$$
 $F(b) = \lim_{x \to b} F(x) < \infty.$

Теперь с использованием функции распределения F(x) зададим функцию множества μ_0 на промежутках $\langle a,b \rangle$:

$$\mu_0((a,b]) = F(b) - F(a), \qquad \mu_0([a,b]) = F(b) - F(a-),$$

$$\mu_0((a,b)) = F(b-) - F(a), \qquad \mu_0([a,b]) = F(b-) - F(a-),$$

где $F(x-)=\lim_{h\to +0}F(x-h)$. Далее, если $A=\bigcup_{i=1}^n\langle a_i,b_i\rangle,\ n<\infty,$ где промежутки $\langle a_i,b_i\rangle$ попарно не пересекаются, то положим

$$\mu_0\left(\bigcup_{i=1}^n \langle a_i, b_i \rangle\right) = \sum_{i=1}^n \mu_0(\langle a_i, b_i \rangle).$$

Тем самым мы задали μ_0 на системе \mathcal{A} , состоящей из множеств вида (13.2). В силу свойств функции распределения F(x) (см. определение 13.9) μ_0 является конечной мерой на алгебре \mathcal{A} , поэтому по теореме 13.2 может быть продолжена и притом единственным образом до меры μ , заданной на измеримом пространстве { \mathbb{R}^1 , $\mathcal{B}(\mathbb{R}^1)$ }.

Замечания. 1) С каждой конечной мерой μ , заданной на $\{\mathbb{R}^1, \mathcal{B}(\mathbb{R}^1)\}$, можно связать функцию

$$F_{\mu}(x) = \mu((-\infty, x]), \quad x \in \mathbb{R}^1.$$

Из свойств меры (см. п. 13.2) вытекает, что F_{μ} является функцией распределения, причем $F_{\mu}(+\infty) = \lim_{x \to +\infty} F_{\mu}(x) = \mu(\mathbb{R}^1)$.

2) Между функциями распределения и конечными мерами на $\{\mathbb{R}^1, \mathcal{B}(\mathbb{R}^1)\}$ существует взаимно однозначное соответствие, т. е. всякой конечной мере μ соответствует функция распределения $F_{\mu}(x)$, и наоборот, для всякой функции распределения F(x) на \mathbb{R}^1 существует конечная мера μ , такая, что $F_{\mu} \equiv F$.

Измеримое пространство $\{\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)\}$. Пространство \mathbb{R}^n есть прямое произведение n экземпляров прямых \mathbb{R}^1 , т. е. $\mathbb{R}^n = \mathbb{R}^1 \times \ldots \times \mathbb{R}^1$ — множество упорядоченных наборов вещественных чисел $x = \{x_1, \ldots, x_n\}^*$. Определим на этом пространстве систему подмножеств \mathcal{A}^n , образованную множествами

$$A = A_1 \times \ldots \times A_n = \prod_{k=1}^n A_k, \quad A_k \in \mathcal{A},$$

где \mathcal{A} — алгебра подмножеств прямой вида (13.2). Нетрудно показать, что \mathcal{A}^n образует алгебру.

О пределение 13.10. σ -алгебра, порожденная системой \mathcal{A}^n , обозначается $\mathcal{B}(\mathbb{R}^n)$ и называется борелевской σ -алгеброй множеств \mathbb{R}^n , а ее элементы — борелевскими множествами.

Определение 13.11. *Мерой Лебега на* \mathbb{R}^n называется мера λ^n , определенная на $\{\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)\}$, такая, что

$$\lambda^{n} \left(\prod_{i=1}^{n} \langle a_{i}, b_{i} \rangle \right) = \prod_{i=1}^{n} (b_{i} - a_{i})$$

для всех $-\infty \leqslant a_i \leqslant b_i \leqslant \infty$.

Из теоремы 13.2 следует, что мера Лебега на \mathbb{R}^n существует и единственна. Отметим, что мера Лебега на \mathbb{R}^n не является конечной, так как $\lambda^n(\mathbb{R}^n)=\infty$.

Конечная мера на борелевской σ -алгебре \mathbb{R}^n может быть задана с помощью n-мерной функции распределения, которая определяется следующим образом.

Определение 13.12. Функция $F(x_1, \ldots, x_n)$, $x_1, \ldots, x_n \in \mathbb{R}^1$, называется n-мерной функцией распределения, если она обладает следующими свойствами.

1) $F(x_1, ..., x_n)$ монотонна в следующем смысле:

$$\Delta_1 \dots \Delta_n F(x_1, \dots, x_n) \geqslant 0,$$

где Δ_i — оператор конечной разности по переменной x_i

$$\Delta_i F(x_1, \dots, x_n) = F(x_1, \dots, x_{i-1}, x_i + h_i, x_{i+1}, \dots, x_n) - F(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n),$$

а $h_1 \geqslant 0, \ldots, h_n \geqslant 0$ произвольны.

2) Если хотя бы одна из переменных $x_i \to -\infty$, то

$$F(x_1,\ldots,x_n)\to 0;$$

если все переменные $x_i \to +\infty$, то

$$F(x_1,\ldots,x_n)\to F(+\infty,\ldots,+\infty)<\infty.$$

3) $F(x_1, ..., x_n)$ непрерывна справа по переменным x_i .

Из теоремы 13.2 и свойств n-мерной функции распределения $F(x_1, \ldots, x_n)$ (см. определение 13.12) следует, что на измеримом пространстве $\{\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)\}$ существует однозначно определенная конечная мера μ , такая, что $F_{\mu} \equiv F$, где

$$F_{\mu}(x_1, \dots, x_n) = \mu\Big(\prod_{i=1}^n (-\infty, x_i]\Big), \quad x_1, \dots, x_n \in \mathbb{R}^1.$$
 (13.3)

Верно и обратное, если μ — конечная мера на $\{\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)\}$, то функция $F_{\mu}(x_1,\ldots,x_n)$, определяемая соотношением (13.3), является n-мерной функцией распределения. Тем самым между n-мерными функциями распределения и конечными мерами на $\{\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)\}$ существует вза-имно однозначное соответствие. В этом случае

$$F_{\mu}(+\infty,\ldots,+\infty) = \mu(\mathbb{R}^n).$$

13.4. Измеримые функции. Пусть $\{X, \mathcal{A}\}$ — некоторое измеримое пространство.

Определение 13.13. Вещественная функция $f(x), x \in X$, называется \mathcal{A} -измеримой, если

$$f^{-1}(B) \in \mathcal{A} \quad \forall B \in \mathcal{B}(\mathbb{R}^1),$$
 (13.4)

где $f^{-1}(B) = \{x \in X : f(x) \in B\} - npooбpas$ множества B.

Тем самым измеримость функции означает, что прообраз любого борелевского подмножества \mathbb{R}^1 является измеримым множеством в X.

Замечания. 1) Очевидно, что постоянная функция $f(x) \equiv \text{const}$ является измеримой относительно любой σ -алгебры.

2) Индикаторная функция $I_A(x)$ множества A, определяемая как

$$I_A(x) = \begin{cases} 1 & \text{при} \quad x \in A, \\ 0 & \text{при} \quad x \notin A, \end{cases}$$

является измеримой в том и только том случае, когда множество A измеримо, т. е. $A \in \mathcal{A}$.

3) Условие \mathcal{A} -измеримости функции f(x) тем ограничительнее, чем уже σ -алгебра \mathcal{A} , т. е. \mathcal{A} -измеримая f(x) является \mathcal{A}' -измеримой, если $\mathcal{A} \subseteq \mathcal{A}'$.

Для проверки измеримости функции используется следующий результат.

Теорема 13.3. Функция f(x), заданная на измеримом пространстве $\{X, \mathcal{A}\}$, является \mathcal{A} -измеримой, если для всякого $c \in \mathbb{R}^1$ измеримыми являются множества

$${x \in X : f(x) \leq c}.$$

Функция $\varphi(y)$, $y \in \mathbb{R}^1$, заданная на действительной прямой, называется борелевской функцией, если она $\mathcal{B}(\mathbb{R}^1)$ -измерима. Примерами борелевских функций являются все кусочно непрерывные функции.

Теорема 13.4. Пусть $\{X, \mathcal{A}\}$ — измеримое пространство. Сложная функция $h(x) = \varphi(f(x)), x \in X$, является \mathcal{A} -измеримой, если функция $f(x), x \in X$, \mathcal{A} -измерима, а функция $\varphi(y), y \in \mathbb{R}^1$, — борелевская.

Простые арифметические операции над конечным или счетным набором измеримых функций не выводят за рамки множества измеримых функций.

Теорема 13.5. Пусть функции $f_n, n = 1, 2, \ldots$ определены на измеримом пространстве $\{X, A\}$ и A-измеримы. Тогда функции

$$f_1(x) + f_2(x), \quad f_1(x)f_2(x), \quad 1/f_1(x) \ (npu \ ycsobuu \ f_1(x) \neq 0),$$

$$|f_1(x)|$$
, $\max\{f_1(x), f_2(x)\}$, $\min\{f_1(x), f_2(x)\}$, $\sup_n f_n(x)$, $\inf_n f_n(x)$

также являются измеримыми.

Из приведенного результата следует, что множество

$$A = \{ x \in X \colon \exists \lim_{n \to \infty} f_n(x) \},\$$

на котором существует предел последовательности измеримых функций $\{f_n(x)\}$, является измеримым, т. е. $A \in \mathcal{A}$.

Следующее определение описывает важный пример измеримой функции.

Определение 13.14. Измеримая функция f(x), определенная на измеримом пространстве $\{X, \mathcal{A}\}$, называется *простой*, если она принимает конечное число значений.

Очевидно, что каждая простая измеримая функция f(x) допускает представление

$$f(x) = \sum_{k=1}^{m} c_k I_{A_k}(x), \quad x \in X,$$
(13.5)

где $c_k \in \mathbb{R}^1$, $A_k \in \mathcal{A}$ и $A_i \cap A_j = \varnothing$, $i \neq j$, $m < \infty$.

Теорема 13.6. Для всякой неотрицательной измеримой функции f(x) существует неубывающая последовательность неотрицательных простых измеримых функций $\{f_n(x)\}$, сходящаяся κ f(x), m.e.

$$0 \leqslant f_n(x) \uparrow f(x)$$
 npu $n \to \infty$ discrete $x \in X$.

Результат, приведенный выше, является ключевым при построении интеграла Лебега.

Определение 13.15. Пусть f(x) — некоторая измеримая функция, определенная на измеримом пространстве $\{X, \mathcal{A}\}$. Система

$$\mathcal{A}_f = \{ f^{-1}(B) \colon B \in \mathcal{B}(\mathbb{R}^1) \}$$

называется σ -алгеброй, порожденной функцией f(x).

Нетрудно убедиться, что \mathcal{A}_f действительно является σ -алгеброй, причем $\mathcal{A}_f \subseteq \mathcal{A}$. Класс функций, измеримых относительно σ -алгебры \mathcal{A}_f , имеет простое описание.

Теорема 13.7. Функция g(x), $x \in X$, является \mathcal{A}_f -измеримой тогда и только тогда, когда существует борелевская функция $\varphi(y)$, $y \in \mathbb{R}^1$, такая, что

$$g(x) = \varphi(f(x)) \quad \forall x \in X.$$

О пределение 13.16. Две измеримые функции f(x) и g(x), заданные на $\{X, \mathcal{A}, \mu\}$, называются эквивалентными, если f(x) = g(x) почти всюду по мере μ , т. е. $\mu\{x \in X : f(x) \neq g(x)\} = 0$.

Определение 13.17. Последовательность $\{f_n(x)\}$ измеримых функций, определенных на $\{X, \mathcal{A}, \mu\}$, называется сходящейся почти всюду к функции f(x), если

$$\mu\{x \in X : \lim_{n \to \infty} f_n(x) \neq f(x)\} = 0.$$

Tеорема 13.8. Если последовательность $\{f_n(x)\}$ измеримых функций сходится к f(x) почти всюду, то f(x) измерима.

Определение 13.18. Последовательность $\{f_n(x)\}$ измеримых функций, определенных на $\{X, \mathcal{A}, \mu\}$, называется сходящейся по мере μ к измеримой функции f(x), если для любого $\varepsilon > 0$

$$\lim_{n \to \infty} \mu\{x \in X : |f_n(x) - f(x)| > \varepsilon\} = 0.$$

Соотношение между этими двумя типами сходимости определяется следующими теоремами.

Теорема 13.9. Если последовательность $\{f_n(x)\}$ сходится κ f(x) почти всюду относительно конечной меры μ , то $f_n(x)$ сходится κ f(x) по мере μ .

Обратное утверждение, вообще говоря, не верно, тем не менее справедлив следующий результат.

Теорема 13.10. Если последовательность $\{f_n(x)\}$ сходится κ f(x) по мере, то существует подпоследовательность $\{f_{n_k}(x)\}$, сходящаяся κ f(x) почти всюду.

13.5. Интеграл Лебега. Пусть $\{X, \mathcal{A}, \mu\}$ — полное пространство с мерой. Определим вначале интеграл Лебега от простой измеримой функции.

Определение 13.19. Интеграл Лебега от простой измеримой функции f(x), имеющей вид (13.5), определяется равенством

$$\int_{X} f(x) \,\mu(dx) = \sum_{k} c_{k} \mu(A_{k}). \tag{13.6}$$

Теперь распространим понятие интеграла Лебега на неотрицательную измеримую функцию f(x). В силу теоремы 13.6 существует последовательность неотрицательных простых измеримых функций $\{f_n(x)\}$, таких, что

$$0 \leqslant f_n(x) \uparrow f(x)$$
 при $n \to \infty$ для всех $x \in X$. (13.7)

Определение 13.20. Интегралом Лебега от неотрицательной измеримой функции f(x) называется величина

$$\int_{X} f(x) \mu(dx) = \lim_{n \to \infty} \int_{X} f_n(x) \mu(dx).$$
 (13.8)

Данное определение корректно, поскольку при заданной функции f(x) предел (13.8) (конечный или бесконечный) существует для любой аппроксимирующей последовательности (13.7) и не зависит от ее выбора.

Для краткости будем обозначать

$$I(f) = \int_{X} f(x) \, \mu(dx).$$

Пусть теперь f(x) — произвольная измеримая функция. Введем обозначения

$$f^+(x) = \max\{f(x), 0\}, \qquad f^-(x) = \max\{-f(x), 0\}.$$

Тогда функции $f^+(x)\geqslant 0,\ f^-(x)\geqslant 0$ также являются измеримыми, причем $f(x)=f^+(x)-f^-(x).$

Определение 13.21. Если $\min\{I(f^+),I(f^-)\}<\infty$, то интеграл Лебега от f(x) существует (или определен) и имеет вид

$$I(f) = \int_{X} f(x) \, \mu(dx) = I(f^{+}) - I(f^{-}).$$

Если $|I(f)| < \infty$, то f(x) называется интегрируемой по мере μ или суммируемой.

Интеграл по множеству $A \in \mathcal{A}$ определяется как

$$\int_{A} f(x) \mu(dx) = \int_{X} f(x) I_{A}(x) \mu(dx),$$

а f(x) называется *интегрируемой на множестве* A, если интегрируема функция $f(x)I_A(x)$.

Замечание. В соответствии с определением 13.21 интеграл Лебега от неотрицательной функции f(x) определен всегда, при этом $0 \le I(f) \le \infty$.

18 Б.М. Миллер и А.Р. Панков

Перечислим свойства интеграла Лебега, непосредственно вытекающие из его определения.

1)
$$\int\limits_X I_A(x)\,\mu(dx)=\mu(A)$$
 для всякого $A\in\mathcal{A}.$

2) Для всех $\alpha, \beta \in \mathbb{R}^1$

$$I(\alpha f + \beta g) = \alpha I(f) + \beta I(g),$$

причем если правая часть имеет смысл, то интеграл в левой части интеграл определен.

3) Если f(x), g(x) интегрируемы и $f(x) \leqslant g(x)$, то $I(f) \leqslant I(g)$.

4) Если
$$\mu(A) = 0$$
, то $\int_A f(x) \, \mu(dx) = 0$.

5) Если f(x) = g(x) почти всюду по мере μ , то I(f) = I(g), причем оба интеграла существуют или не существуют одновременно.

6) Если $h(x) \geqslant 0$ интегрируема и $|f(x)| \leqslant h(x)$ почти всюду по мере μ , то f(x) интегрируема.

7) Интегрируемость функции равносильна интегрируемости ее модуля, т. е.

$$|I(f)| < \infty \iff I(|f|) < \infty,$$

кроме того, $|I(f)| \leqslant I(|f|)$.

8) Если $f(x) \geqslant 0$ и I(f) = 0, то f(x) = 0 почти всюду. В частности, если I(|f|) = 0, то f(x) = 0 почти всюду.

9) Если функция f(x) интегрируема на A, то она интегрируема на любом измеримом множестве $A' \subset A$.

10) Если f(x)=0 почти всюду, то I(f)=0.

11) (Неравенство Чебышева). Если c>0, то

$$\mu\{x \in X \colon |f(x)| \geqslant c\} \leqslant \frac{1}{c} \int\limits_{X} |f(x)| \, \mu(dx).$$

12) (Неравенство Минковского). Если $p \geqslant 1$, то

$$\left(\int_{X} |f(x) + g(x)|^{p} \, \mu(dx) \right)^{1/p} \leqslant \left(\int_{X} |f(x)|^{p} \, \mu(dx) \right)^{1/p} + \left(\int_{X} |g(x)|^{p} \, \mu(dx) \right)^{1/p}.$$

13) (Неравенство Иенсена). Если $\varphi(y),\ y\in\mathbb{R}^1,$ — выпуклая вниз функция и $\mu(X)=1,$ то

$$\int\limits_X \varphi(f(x)) \, \mu(dx) \leqslant \varphi\Big(\int\limits_X f(x) \, \mu(dx)\Big).$$

14) (Неравенство Гельдера). Если 1 < $p,\, q < \infty$ и $\frac{1}{p} + \frac{1}{q} = 1$, то

$$\left| \int\limits_X f(x)g(x) \, \mu(dx) \right| \leqslant \left(\int\limits_X |f(x)|^p \, \mu(dx) \right)^{1/p} \cdot \left(\int\limits_X |g(x)|^q \, \mu(dx) \right)^{1/q},$$

причем интеграл в левой части определен, если интегралы в правой части конечны. При p=q=2 неравенство Гельдера называется nepa- венством Kouu-Буняковского:

$$\left| \int\limits_X f(x)g(x) \, \mu(dx) \right|^2 \leqslant \int\limits_X |f(x)|^2 \, \mu(dx) \int\limits_X |g(x)|^2 \, \mu(dx).$$

Теорема 13.11 (σ -аддитивность интеграла Лебега). Если функция f(x) интегрируема и $X = \bigcup_{n=1}^{\infty} A_n, A_i \cap A_j = \emptyset$ при $i \neq j$, то

$$\int_{X} f(x) \mu(dx) = \sum_{n=1}^{\infty} \int_{A_n} f(x) \mu(dx),$$

еде в правой части интегралы конечны, а ряд сходится абсолютно. Из теоремы 13.11 следует, что для любой неотрицательной измеримой функции $f(x) \geqslant 0$ функция множества

$$\nu(A) = \int_{A} f(x) \,\mu(dx), \quad A \in \mathcal{A}, \tag{13.9}$$

является мерой на измеримом пространстве $\{X, \mathcal{A}\}$.

Теорема 13.12 (абсолютная непрерывность интеграла Лебега). Пусть f(x) — интегрируемая функция, тогда для любого $\varepsilon>0$ существует такое $\delta>0$, что $\left|\int\limits_A f(x)\,\mu(dx)\right|<\varepsilon$ для всякого измеримого

множества $A \in \mathcal{A}$, такого, что $\mu(A) < \delta$.

Следующая теорема утверждает, что всякая мера ν , абсолютно непрерывная относительно меры μ , допускает представление (13.9).

Определение 13.22. Мера ν называется абсолютно непрерывной относительно меры μ (сокращенно $\nu \ll \mu$), если для любого $A \in \mathcal{A}$ из $\mu(A) = 0$ следует, что $\nu(A) = 0$.

Теорема 13.13 (Радон, Никодим). Если $\nu \ll \mu$, то существует измеримая неотрицательная функция $\rho(x)$, такая, что

$$u(A) = \int_A \rho(x) \, \mu(dx) \quad \forall A \in \mathcal{A}.$$

Функция $\rho(x)$ называется производной Радона–Никодима меры ν по мере μ и обозначается

$$\rho(x) = \frac{d\nu}{d\mu}(x).$$

Следующий результат дает правило замены меры в интеграле Лебега.

T еорема 13.14. В условиях теоремы 13.13 для любой измеримой функции g(x) имеет место равенство

$$\int_X g(x) \nu(dx) = \int_X g(x) \rho(x) \mu(dx),$$

где интегралы в левой и правой частях существуют или не существуют одновременно.

Тем самым интегрируемость функции g(x) по мере ν равносильна интегрируемости функции g(x) $\rho(x)$ по мере μ .

Теперь рассмотрим вопрос о замене переменной под знаком интеграла Лебега.

Определение 13.23. Пусть f(x) — измеримая функция, определенная на пространстве с мерой $\{X, \mathcal{A}, \mu\}$. Тогда мера μ_f на $\{\mathbb{R}^1, \mathcal{B}(\mathbb{R}^1)\}$, задаваемая равенством

$$\mu_f(B)=\mu(f^{-1}(B)),\quad B\in\mathcal{B}(\mathbb{R}^1),$$

называется мерой, порожденной функцией f.

Нетрудно проверить, что функция множества μ_f действительно является мерой на борелевской σ -алгебре $\mathcal{B}(\mathbb{R}^1)$.

Теорема 13.15 (формула замены переменной в интеграле Лебега). Пусть функция f(x), $x \in X$, измерима, а функция $\varphi(y)$, $y \in \mathbb{R}^1$, является борелевской. Тогда справедливо равенство

$$\int\limits_X \varphi(f(x))\,\mu(dx) = \int\limits_{\mathbb{R}^1} \varphi(y)\,\mu_f(dy),$$

где интегралы в левой и правой частях существуют или не существуют одновременно.

Предельный переход под знаком интеграла Лебега. Следующие результаты показывают, в каких случаях можно переходить к пределу под знаком интеграла Лебега.

Теорема 13.16 (Лебег). Пусть последовательность $\{f_n(x)\}$ сходится почти всюду к f(x), причем для всех п почти всюду выполняется неравенство $|f_n(x)| \leqslant \varphi(x)$, где функция $\varphi(x)$ интегрируема. Тогда предельная функция f(x) также является интегрируемой и

$$\lim_{n \to \infty} \int_X f_n(x) \, \mu(dx) = \int_X f(x) \, \mu(dx).$$

T е о р е м а 13.17 (Ле́ви). Пусть $\{f_n(x)\}$ — неубывающая последовательность функций, т. е.

$$f_1(x) \leqslant f_2(x) \leqslant \ldots \leqslant f_n(x) \leqslant \ldots$$

где $f_n(x)$ интегрируемы, а их интегралы ограничены в совокупности:

$$\exists K < \infty : \qquad \int_{X} f_n(x) \,\mu(dx) \leqslant K. \tag{13.10}$$

Тогда почти всюду существует конечный предел $f(x) = \lim_{n \to \infty} f_n(x)$, такой, что функция f(x) интегрируема и

$$\lim_{n \to \infty} \int_{X} f_n(x) \, \mu(dx) = \int_{X} f(x) \, \mu(dx).$$

Теорема 13.18 (Фату). Если последовательность неотрицательных функций $\{f_n(x)\}$ сходится почти всюду к f(x), причем выполнено (13.10), то f(x) интегрируема и $\int\limits_X f(x)\,\mu(dx)\leqslant K$.

Интеграл Лебега на прямой. Следующее утверждение показывает связь между интегралом Римана и интегралом Лебега.

Теорема 13.19. Если существует интеграл Римана

$$I_R(f) = \int_a^b f(x) \, dx,$$

 $mo\ f(x)$ интегрируема по мере Лебега λ на [a,b] и

$$I_L(f) = \int_{[a,b]} f(x) \lambda(dx) = I_R(f).$$

Заметим, что обратное утверждение в общем случае неверно.

Введем еще одно понятие интеграла, основанное на понятии интеграла Лебега.

Определение 13.24. Пусть f(x), $x \in \mathbb{R}^1$, — борелевская функция, а F(x) — функция распределения на \mathbb{R}^1 (см. определение 13.9). Интеграл Стилтьеса от f(x) по функции распределения F(x) определяется следующим образом:

$$\int_{-\infty}^{\infty} f(x) dF(x) = \int_{\mathbb{R}^1} f(x) \mu(dx),$$

где интеграл в правой части понимается как интеграл Лебега по мере μ , имеющей функцию распределения F(x).

В большинстве практически важных случаев функция распределения F(x) может быть представлена в виде

$$F(x) = F^{a}(x) + F^{d}(x), \quad F^{a}(x) = \int_{-\infty}^{x} p(y) \lambda(dy), \quad F^{d}(x) = \sum_{k: x_{k} \leq x} p_{k},$$

где функция $p(y) \geqslant 0$ интегрируема по мере Лебега на \mathbb{R}^1 , а множество точек $\{x_k\}$ не более чем счетно, причем $p_k > 0$.

Составляющая $F^a(x)$ называется функцией абсолютно непрерывного распределения или просто абсолютно непрерывной функцией. В этом случае для почти всех $x \in \mathbb{R}^1$ (по мере Лебега) справедливо равенство $\frac{d}{dx}F(x)=\frac{d}{dx}F^a(x)=p(x)$, поэтому p(x) называется функцией плотности распределения. Заметим, что если $\mu_a(dx)$ — мера, имеющая функцию распределения $F^a(x)$, то плотность p(x) есть производная Радона—Никодима меры μ_a по мере Лебега λ .

Составляющая $F^d(x)$ называется функцией дискретного распределения, при этом $p_k = F(x_k) - F(x_k-)$ есть величина скачка функции F(x) в точке ее разрыва $x_k \in \mathbb{R}^1$. Если число скачков конечно, то $F^d(x)$ кусочно постоянна.

Если f(x) — борелевская функция, то справедливо следующее правило вычисления интеграла Стилтьеса:

$$\int_{-\infty}^{\infty} f(x) dF(x) = \int_{\mathbb{R}^1} f(x) p(x) \lambda(dx) + \sum_{k} f(x_k) p_k,$$

причем интеграл Стилтьеса конечен, если функция f(x) p(x) интегрируема по мере Лебега, а ряд $\sum_k f(x_k) p_k$ сходится абсолютно.

В заключение рассмотрим пример меры на прямой, чрезвычайно важный для приложения. Мера $\delta_{x_0}(B),\,B\in\mathcal{B}(\mathbb{R}^1),\,x_0\in\mathbb{R}^1,$ определяемая равенством

$$\delta_{x_0}(B) = \left\{ \begin{array}{ll} 1, & \text{если} & x_0 \in B, \\ 0, & \text{если} & x_0 \notin B, \end{array} \right.$$

называется мерой Дирака, сосредоточенной в точке x_0 . Тогда интеграл по мере Дирака принимает вид

$$\int_{\mathbb{R}^1} f(x) \, \delta_{x_0}(dx) = f(x_0).$$

Последний интеграл часто записывают в виде

$$\int_{-\infty}^{\infty} f(x) \, \delta(x - x_0) \, dx = f(x_0),$$

где $\delta(x)$ называют $\emph{дельта-функцией Дирака}.$ При этом, поскольку функция

$$\mathbb{I}(x) = \left\{ \begin{array}{ll} 1, & \text{если} & x \geqslant 0, \\ 0, & \text{если} & x < 0, \end{array} \right.$$

является функцией распределения меры Дирака δ_0 , считают, что выполнено равенство $\delta(x)=\frac{d\,\mathbb{I}(x)}{dx}.$

13.6. Гильбертово пространство. Сначала введем понятие линейного пространства.

Определение 13.25. Непустое множество H называется линейным пространством, если на H определены две операции: сложение элементов (+) и умножение элементов на числа (\circ).

Для любых элементов $x, y, z \in H$ и любых чисел α, β операции сложения и умножения должны обладать следующими свойствами:

- 1) x + y = y + x;
- 2) (x+y)+z=x+(y+z);
- 3) существует элемент $\theta \in H$, такой, что $\theta + x = x$;
- 4) существует элемент $(-x) \in H$, такой, что x + (-x) = 0;
- 5) $\alpha \circ (x + y) = \alpha \circ x + \alpha \circ y$;
- 6) $(\alpha + \beta) \circ x = \alpha \circ x + \beta \circ y;$
- 7) $(\alpha\beta) \circ x = \alpha \circ (\beta \circ x);$
- 8) $1 \circ x = x$.

Если умножение определено на вещественные числа, то пространство называется вещественным или dействительным, если умножение определено на комплексные числа, то пространство называется комплексным.

Замечание. Во всяком линейном пространстве нулевой элемент θ единственен, а противоположный элемент (-x) однозначно определяется элементом $x \in H$. В дальнейшем мы будем опускать знак умножения (\circ) , а выражение x+(-y) будем записывать в виде x-y.

Далее без ограничения общности будем считать, что H — комплексное линейное пространство, а множество комплексных чисел обозначать $\mathbb C$.

Определение 13.26. Подпространством M линейного пространства H называется подмножество, замкнутое относительно операций сложения и умножения, т. е.

$$\alpha, \beta \in \mathbb{C}, \ x, y \in M \implies \alpha x + \beta y \in M.$$

Замечания. 1) Определение 13.26 означает, что подпространство M вместе с каждым конечным набором своих элементов $\{x_1,\ldots,x_n\}$, содержит любую их линейную комбинацию $\alpha_1x_1+\ldots+\alpha_nx_n$, где $\alpha_1,\ldots,\alpha_n\in\mathbb{C}$. В частности, всегда верно $\theta\in M$.

- 2) $M_0 = \{0\}$ называется нулевым подпространством.
- 3) Пересечение $\bigcap_{\alpha} M_{\alpha}$ произвольного набора подпространств $\{M_{\alpha}\}$ также является подпространством.

Определение 13.27. Линейной оболочкой $\mathcal{L}(N)$ некоторого множества $N\subseteq H$ называется множество всех возможных линейных комбинаций элементов из N.

Из определения 13.27 следует, что $\mathcal{L}(N)$ является подпространством, причем $\mathcal{L}(N) = \bigcap_{\alpha} M_{\alpha}$, где $\{M_{\alpha}\}$ — семейство всех подпространств, содержащих множество N.

Определение 13.28. Элементы $\{x_1,\ldots,x_n\}$ линейного пространства H называются линейно независимыми, если

$$\alpha_1, \ldots, \alpha_n \in \mathbb{C}, \ \alpha_1 x_1 + \ldots + \alpha_n x_n = 0 \implies \alpha_1 = \ldots = \alpha_n = 0.$$

Если для линейного пространства H существует набор линейно независимых элементов $\{x_1,\ldots,x_n\}\subset H$, такой, что выполнено $H=\mathcal{L}\{x_1,\ldots,x_n\}$, то $\{x_1,\ldots,x_n\}$ называют базисом пространства H, а число n— его размерностью (сокращенно $n=\dim H$). В этом случае каждый элемент $x\in H$ может быть представлен в виде: $x=\alpha_1x_1+\ldots+\alpha_nx_n$, причем коэффициенты $\{\alpha_k\}$ определяются однозначно.

Определение 13.29. Функция (\cdot,\cdot) , определенная на линейном пространстве H и принимающая числовые значения, называется $c\kappa a$ -лярным произведением, если для любых элементов $x,y,z\in H$ и любых чисел α,β справедливы следующие свойства:

- 1) $(x,x) \geqslant 0$ и $(x,x) = 0 \implies x = 0$;
- 2) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z);$
- 3) $(y, x) = \overline{(x, y)}$.

Определение 13.30. Пусть на H определено скалярное произведение. $Hopmo\ddot{u}$ элемента $x \in H$ будем называть число

$$||x|| = (x, x)^{1/2}.$$
 (13.11)

В этом случае говорят, что норма nopo жедена скалярным произведением.

Непосредственно из определений вытекают следующие свойства скалярного произведения и порожденной им нормы:

- 1) $||x|| \ge 0$; из ||x|| = 0 следует $x = \theta$;
- 2) $\|\alpha x\| = |\alpha| \|x\|$;
- 3) $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника);
- 4) $|(x,y)| \le ||x|| ||y||$ (неравенство Коши–Буняковского), причем равенство достигается только, если x, y линейно зависимы.

С помощью нормы можно ввести понятие cxodumocmu nocnedoea-menьности элементов $\{x_n\}$ пространства H.

Определение 13.31. Последовательность $\{x_n\}$ сходится к элементу $x \in H$ при $n \to \infty$ (сокращенно $x_n \to x$), если $||x_n - x|| \to 0$.

Скалярное произведение является *непрерывным* в следующем смысле:

$$x_n \to x, \ y_m \to y \implies (x_n, y_m) \to (x, y).$$

О пределение 13.32. Последовательность $\{x_n\}$ называется $\phi yn-\partial a menmaльной$, если

$$||x_n - x_m|| \to 0$$
 при $n, m \to \infty$.

Определение 13.33. Линейное пространство с нормой (13.11) называется nonhum, если любая фундаментальная последовательность его элементов сходится к некоторому элементу этого пространства.

Определение 13.34. Линейное пространство со скалярным произведением и нормой (13.11) называется $\it гиль \it бертовым$ пространством, если оно полно.

Определение 13.35. Подпространство M гильбертова пространства H называется ecody $\mathit{nлотным}$, если для всякого элемента $x \in H$ существует последовательность $\{x_n\}$, такая, что $x_n \in M$ и $x_n \to x$.

Замечание. Если пространство H не является полным, то оно всегда может быть *пополнено*, т. е. существует такое полное пространство \widetilde{H} , что $H \subset \widetilde{H}$ и H всюду плотно в \widetilde{H} .

Простой критерий сходимости последовательности элементов гильбертова пространства приводится в следующей теореме.

T е о р е м а 13.20. Если H — гильбертово пространство, то последовательность $\{x_n\}$ сходится к некоторому элементу пространства H тогда и только тогда, когда существует предел

$$\lim_{n,m\to\infty}(x_n,x_m).$$

Определение 13.36. Подпространство M гильбертова пространства H называется $\mathit{замкнутым},$ если из того, что $x_n \to x,$ при $n \to \infty,$ где $x_n \in M,$ следует $x \in M.$

Таким образом, замкнутое подпространство гильбертова пространства само является гильбертовым пространством.

Рассмотрим важнейшие примеры гильбертовых пространств.

Конечномерное евклидово пространство \mathbb{R}^n . Его элементами являются упорядоченные наборы вещественных чисел (n-мерные векторы) $x = \{x_1, \dots, x_n\}^*, x_1, \dots, x_n \in \mathbb{R}^1$. Скалярное произведение и норма пространства \mathbb{R}^n имеют вид

$$(x,y) = \sum_{k=1}^{n} x_k y_k, \qquad ||x|| = |x| = \left(\sum_{k=1}^{n} x_k^2\right)^{1/2},$$

где $y = \{y_1, \ldots, y_n\}^*$. Очевидно, что dim $\mathbb{R}^n = n$.

Пространство l_2 . Его элементами являются бесконечные последовательности комплексных чисел $x = \{x_1, x_2, \dots\}$, таких, что

$$||x|| = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{1/2} < \infty.$$

Скалярное произведение элементов $x,y\in l_2$ имеет вид

$$(x,y) = \sum_{k=1}^{\infty} x_k \overline{y_k}$$

и порождает норму $\|x\|$, определенную выше. Заметим, что пространство l_2 бесконечномерно.

Пространство $L_2\{X, \mathcal{A}, \mu\}$. Пусть $\{X, \mathcal{A}, \mu\}$ — некоторое пространство с мерой. Тогда $L_2\{X, \mathcal{A}, \mu\}$ определяется как множество всех \mathcal{A} -измеримых комплексных функций f(x), интегрируемых с квадратом по мере μ , т. е. таких, что

$$||f|| = \left(\int_{X} |f(x)|^2 \,\mu(dx)\right)^{1/2} < \infty.$$
 (13.12)

Объединим в один класс эквивалентности все функции $\tilde{f}(x)$, эквивалентные (по мере μ) данной функции f(x), и в дальнейшем функции $\tilde{f}(x)$ различать не будем. Тогда из $\|f\|=0$ следует f=0, поэтому выражение (13.12) определяет норму, порожденную скалярным произведением

$$(f,g) = \int_{X} f(x) \overline{g(x)} \mu(dx), \quad f,g \in L_2\{X,\mathcal{A},\mu\}.$$
 (13.13)

Следовательно, $L_2\{X,\mathcal{A},\mu\}$ является гильбертовым пространством. Отметим, что $L_2\{X,\mathcal{A},\mu\}$ бесконечномерно, если мера μ не сосредоточена в конечном числе точек.

13.7. Ряды Фурье в гильбертовом пространстве. Пусть далее H — фиксированное гильбертово пространство.

Определение 13.37. Два элемента $x, y \in H$ называются *орто-гональными* (обозначается $x \perp y$), если (x,y) = 0.

Определение 13.38. Система $\{e_1,e_2,\dots\}$ элементов пространства H называется ортогональной, если $e_m \perp e_n$ при $m \neq n$. Если дополнительно $\|e_n\| = 1, n = 1, 2, \dots$, то система называется ортонормальной.

Определение 13.39. Ортонормальная система $\{e_1,e_2,\dots\}\subset H$ называется базисом гильбертова пространства Н, если для каждого $x \in H$ существует, и притом единственное, разложение

$$x = \sum_{k=1}^{\infty} \alpha_k e_k, \tag{13.14}$$

где $\alpha_k \in \mathbb{C}$, а сходимость ряда понимается в следующем смысле:

$$\left\|x - \sum_{k=1}^{n} \alpha_k e_k\right\| \to 0$$
 при $n \to \infty$.

Разложение (13.14) называется рядом Фуръе для x, а коэффициенты α_k вычисляются по формулам

$$\alpha_k = (x, e_k), \quad k = 1, 2, \dots,$$

и называются коэффициентами Фурье.

Из (13.14) также следует равенство Парсеваля:

$$||x||^2 = \sum_{k=1}^{\infty} |\alpha_k|^2,$$

которое является обобщением теоремы Пифагора на бесконечномерный случай.

 ${
m T}$ е о р е м а 13.21. Пусть $\{e_n\}$ — ортонормальная система элементов гильбертова пространства Н. Следующие утверждения

- 1) $\{e_n\}$ базис гильбертова пространства H; 2) линейная оболочка $\mathcal{L}(\{e_n\})$ всюду плотна в H;
- 3) если $x\perp e_n$ для всех n, mo x=0.

B частности, система $\{e^{inx}\big/\sqrt{2\pi},\ n\in\mathbb{Z}\}$ является базисом пространства $L_2([-\pi,\pi],\mathcal{B}([-\pi,\pi]),\lambda)$, где λ — мера Лебега.

13.8. Ортогональное проектирование в гильбертовом пространстве.

Определение 13.40. Если $N \subseteq H$ — произвольное подмножество, то ортогональность $x \perp N$ означает, что $x \perp y$ для всех $y \in N$.

О пределение 13.41. Если M — замкнутое подпространство, то его opmoroнaльное donoлнение M^{\perp} определяется как

$$M^{\perp} = \{ x \in H \colon x \perp M \}.$$

В силу непрерывности скалярного произведения M^{\perp} является замкнутым подпространством.

T е о р е м а 13.22. Пусть M — произвольное замкнутое подпространство гильбертова пространства Н. Тогда любой элемент $x \in H$ имеет единственное разложение вида

$$x = y_x + z_x,$$

 $r\partial e \ y_x \in M, \ z_x \in M^{\perp}.$

Определение 13.42. Элемент y_x , определенный в теореме 13.22, называется ортогональной проекцией x на M и обозначается $\pi_M(x)$. Перечислим основные свойства проекции $\pi_M(x)$:

- 1) $y_x = \pi_M(x) \in M, z_x = x \pi_M(x) \in M^{\perp};$
- 2) $x \in M$ тогда и только тогда, когда $\pi_M(x) = x$, а $x \in M^\perp$ тогда и только тогда, когда $\pi_M(x) = \theta$;
- (x_1, x_2, \dots, x_M) 3) $\|x \pi_M(x)\| \le \|x v\|$ для всех $v \in M$; 4) если $\{e_1, e_2, \dots, e_n, \dots\}$ базис гильбертова пространства H, $M = \mathcal{L}\{e_1, \dots, e_n\}$, т.е. M является линейной оболочкой системы

 $\{e_1,\ldots,e_n\}$, то $\pi_M(x)=\sum_{k=1}^n(x,e_k)\,e_k$. Таким образом, $\pi_M(x)-n$ -я частичная сумма ряда Φ урье для x.

3 амечание. Свойство 3 означает, что $\pi_M(x)$ — наилучшая аппроксимация (оценка) элемента x элементами из подпространства M, а $x - \pi_M(x)$ представляет собой ошибку указанной аппроксимации. В частности, если $M=\mathcal{L}\{e_1,\ldots,e_n\}$, то $\pi_M(x)$ является наилучшей оценкой среди всех оценок, представимых в виде линейной комбинации элементов $\{e_1, \ldots, e_n\}$, т.е. является наилучшей линейной

Метод построения указанных аппроксимаций (с использованием проекции π_M) называют методом наименьших квадратов.

§ 14. Необходимые сведения из теории вероятностей

14.1. Случайные события и их вероятности.

Определение 14.1. Совокупность объектов $\{\Omega, \mathcal{F}, \mathbf{P}\}$, где

 Ω — пространство элементарных событий ω ;

 $\mathcal{F}-\sigma$ -алгебра подмножеств пространства Ω , образующих систему случайных событий;

 \mathbf{P} — нормированная (т. е. $\mathbf{P}\{\Omega\}=1$) мера на \mathcal{F} , называется вероятностным пространством, а мера ${f P}$ — вероятностной мерой или просто вероятностью.

Замечания. 1) Предполагается, что $\{\Omega, \mathcal{F}, \mathbf{P}\}$ — полное вероятностное пространство (см. п. 13.2).

2) Над случайными событиями из ${\mathcal F}$ можно совершать действия (аналогичные действиям над множествами), для которых мы будем использовать следующие обозначения:

$$A + B = A \cup B$$
, $AB = A \cap B$, $A \setminus B$, $\overline{A} = \Omega \setminus A$,

$$\sum_{k} A_{k} = \bigcup_{k} A_{k}, \quad \prod_{k} A_{k} = \bigcap_{k} A_{k},$$

где событие \overline{A} называется npomusonoложсным A.

Вероятность $\mathbf{P}\{\cdot\}$ обладает следующими свойствами:

- 1) $0 \leq \mathbf{P}\{A\} \leq 1$ для любого события $A \in \mathcal{F}$;
- 2) $\mathbf{P}\{\Omega\} = 1$, где $\Omega \partial ocmosephoe\ coбытие;$
- 3) $\mathbf{P}\{\varnothing\}=0$, где $\varnothing=\overline{\Omega}-$ невозможное событие; 4) $\mathbf{P}\{A+B\}=\mathbf{P}\{A\}+\mathbf{P}\{B\},$ если $AB=\varnothing,$ т. е. события A и Bнесовместны;
- 5) $\mathbf{P}\{A+B\} = \mathbf{P}\{A\} + \mathbf{P}\{B\} \mathbf{P}\{AB\}$ для любых двух событий $A, B \in \mathcal{F};$
- 6) $\mathbf{P}\{A\} \leqslant \mathbf{P}\{B\}$, если $A \subseteq B$ (т. е. A частный случай события B).

Замечание. Указанные свойства следуют из общих свойств меры (см. п. 13.2). Свойство 4 распространяется очевидным образом на любое конечное или счетное множество несовместных событий:

$$\mathbf{P}\Big\{\sum_{k=1}^{\infty}A_k\Big\} = \sum_{k=1}^{\infty}\mathbf{P}\{A_k\}\,, \quad A_k \in \mathcal{F}, \quad A_mA_n = \varnothing \quad \text{при} \quad m \neq n.$$

Определение 14.2. События A и B называются $\emph{независимыми},$ если $P\{AB\} = P\{A\} P\{B\}$. События $\{A_n\}$ независимы в совокупноcmu, если для любого конечного набора событий $A_{n_k},\ k=1,\ldots,m$

$$\mathbf{P}\Big\{\prod_{k=1}^m A_{n_k}\Big\} = \prod_{k=1}^m \mathbf{P}\{A_{n_k}\},\,$$

где m может равняться ∞ .

Определение 14.3. Условной вероятностью события А относительно события B, такого, что $\mathbf{P}\{B\} > 0$, называется величина

$$\mathbf{P}\{A \mid B\} = \frac{\mathbf{P}\{AB\}}{\mathbf{P}\{B\}}.$$

Если события A, B независимы и имеют положительные вероятности, то $\mathbf{P}\{A \mid B\} = \mathbf{P}\{A\}$ и $\mathbf{P}\{B \mid A\} = \mathbf{P}\{B\}$.

Пусть события $H_1, \ldots, H_N \in \mathcal{F}$ удовлетворяют условиям:

а) $P\{H_k\} > 0$ при всех k;

б)
$$H_m H_n = \varnothing,$$
 если $m \neq n;$ в) $\sum_{k=1}^N H_k = \Omega,$

тогда для любого $A \in \mathcal{F}$ справедлива формула полной вероятности:

$$\mathbf{P}{A} = \sum_{k=1}^{N} \mathbf{P}{H_k} \mathbf{P}{A \mid H_k}.$$

События $\{H_k\}$ обычно называют вероятностными гипотезами.

14.2. Случайные величины и векторы.

Определение 14.4. Случайной величиной (СВ), определенной на $\{\Omega, \mathcal{F}, \mathbf{P}\}$, называется числовая функция $\xi(\omega), \omega \in \Omega$, измеримая относительно \mathcal{F} .

Определение 14.4 означает, что для всякого борелевского подмножества $B \subseteq \mathbb{R}^1$ множество

$$\xi^{-1}(B) = \{ \omega \in \Omega \colon \xi(\omega) \in B \}$$
 (14.1)

является случайным событием.

Далее для краткости будем опускать аргумент $\omega\colon \xi,\,\{\xi\in B\}$ и т. п. В силу теоремы 13.5 сумма, разность, произведение и частное двух случайных величин (при условии, что знаменатель не обращается в нуль) также являются случайными величинами.

Определение 14.5. Две случайные величины ξ и η , заданные на $\{\Omega, \mathcal{F}, \mathbf{P}\}$, называются эквивалентными, если

$$\mathbf{P}\{\xi \neq \eta\} = 0.$$

Если некоторое утверждение относительно CB ξ (или совокупности CB) выполнено для всех $\omega \in \Omega \setminus A$, причем $\mathbf{P}\{A\} = 0$, то говорят, что это утверждение выполнено noumu наверное по мере ${f P}$ (или с вероятностью 1). Мы будем сопровождать соответствующее утверждение знаком (${\bf P}$ -п.н.). Например, если ξ и η эквивалентны, то $\xi = \eta \, (\mathbf{P} - \Pi. \, H.).$

Из теоремы 13.4 следует, что если ξ — случайная величина, а g(x), $x \in \mathbb{R}^1$, — борелевская функция, то $g(\xi)$ также является случайной величиной, так как функция $\eta(\omega) = g(\xi(\omega)), \ \omega \in \Omega$ является \mathcal{F} -измеримой. В частности, любое непрерывное преобразование СВ ξ приводит к СВ η (т. е. свойство \mathcal{F} -измеримости сохраняется).

Определение 14.6. Пусть ξ — некоторая случайная величина. Наименьшую σ -алгебру, содержащую события вида

$$\xi^{-1}(B) = \{ \xi \in B \}, \quad B \in \mathcal{B}(\mathbb{R}^1),$$
 (14.2)

будем называть σ -алгеброй, порожденной случайной величиной ξ . Эта σ -алгебра обозначается \mathcal{F}^{ξ} , а также $\sigma\{\xi\}$.

По определению $\mathcal{F}^{\xi} \subseteq \mathcal{F}$. Введенная σ -алгебра \mathcal{F}^{ξ} состоит из всех случайных событий $A \in \mathcal{F}$, о наступлении которых мы можем судить, наблюдая CB ξ .

Теорема 14.1. Пусть $\varphi(x)$ — произвольная борелевская функция, тогда СВ $\eta = \varphi(\xi)$ является \mathcal{F}^{ξ} -измеримой. Наоборот, если некоторая СВ η является \mathcal{F}^{ξ} -измеримой, то существует борелевская функция $\varphi(x)$, такая, что $\eta = \varphi(\xi)$.

О пределение 14.7. Функция $F_{\xi}(x) = \mathbf{P}\{\xi \leqslant x\}, x \in \mathbb{R}^1$, называется функцией распределения СВ ξ .

Функция распределения $F_{\xi}(x)$ обладает всеми свойствами функции распределения меры на измеримом пространстве $\{\mathbb{R}^1, \mathcal{B}(\mathbb{R}^1)\}$ (см. определение 13.9, которое полностью применимо с учетом соотношения $\mu(\mathbb{R}^1)=1$).

Для любой функции распределения F(x) существует полное вероятностное пространство $\{\Omega, \mathcal{F}, \mathbf{P}\}$ и заданная на нем CB ξ , такая, что $F_{\xi}(x) = F(x)$.

Рассмотрим конкретные типы функций распределения.

Определение 14.8. Если СВ ξ принимает значения из конечного или счетного множества $\{a_1,\ldots,a_n,\ldots\}$ с вероятностями соответственно $\{p_1,\ldots,p_n,\ldots\}$, где $p_n>0,\sum p_n=1$, то говорят, что

случайная величина является дискретной (или имеет дискретное распределение). Ее функция распределения имеет вид

$$F_{\xi}(x) = \sum_{k: a_k \leqslant x} p_k, \quad x \in \mathbb{R}^1.$$

Таким образом, функция распределения дискретной СВ имеет разрывы первого рода в точках a_k , а $F_\xi(a_k) - F_\xi(a_k-) = p_k$ — величины скачков. При этом для любого множества $B \in \mathcal{B}(\mathbb{R}^1)$

$$\mathbf{P}\{\xi \in B\} = \sum_{k \colon a_k \in B} p_k.$$

Если множество значений, которые принимает дискретная СВ, конечно, то ее функция распределения кусочно постоянна.

Функция множества $\mathbf{P}_{\xi}(B) = \mathbf{P}\{\xi \in B\}$ является мерой на $\mathcal{B}(\mathbb{R}^1)$ и называется законом распределения СВ ξ . При этом $F_{\xi}(x)$ является функцией распределения этой меры (см. п. 13.3). При определенных условиях мера $\mathbf{P}_{\xi}(B)$ абсолютно непрерывна относительно меры Лебега на $\mathcal{B}(\mathbb{R}^1)$, т. е. $F_{\xi}(x)$ имеет плотность распределения $p_{\xi}(x)$.

О пределение 14.9. Если функция распределения $F_{\xi}(x)$ случайной величины ξ допускает представление

$$F_{\xi}(x) = \int\limits_{-\infty}^{x} p_{\xi}(y) \, dy, \quad$$
где $p_{\xi}(y) \geqslant 0, \quad \int\limits_{-\infty}^{\infty} p_{\xi}(y) \, dy = 1,$

а интеграл понимается как интеграл Лебега, то СВ ξ называется абсолютно непрерывной (имеет непрерывное распределение). Для любого множества $B \in \mathcal{B}(\mathbb{R}^1)$

$$\mathbf{P}_{\xi}(B) = \int_{B} p_{\xi}(y) \, dy.$$

Функция $p_{\xi}(y)$ называется плотностью распределения СВ ξ .

Заметим, что функция $F_{\xi}(x)$ в данном случае не имеет разрывов и почти всюду на \mathbb{R}^1 дифференцируема: $\frac{dF_{\xi}(x)}{dx}=p_{\xi}(x)$. В общем случае функция распределения $F_{\xi}(x)$ непрерывна справа

В общем случае функция распределения $F_{\xi}(x)$ непрерывна справа в каждой точке разрыва $x \in \mathbb{R}^1$. Для вычисления вероятности события $\{\xi \in B\}$, где $B \in \mathcal{B}(\mathbb{R}^1)$, следует вычислять интеграл Лебега-Стилтьеса:

$$\mathbf{P}\{\xi \in B\} = \int\limits_{B} dF_{\xi}(y) = \mathbf{P}_{\xi}(B), \quad B \in \mathcal{B}(\mathbb{R}^{1}).$$

Предположим, что СВ ξ_1, \ldots, ξ_n определены на одном вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$. Тогда упорядоченный набор n случайных величин $\xi = \{\xi_1, \ldots, \xi_n\}^*$ будем называть n-мерным случайным вектором.

Определение 14.10. Наименьшую σ -алгебру, содержащую все события вида

$$\xi^{-1}(B) = \{ \xi \in B \}, \quad B \in \mathcal{B}(\mathbb{R}^n),$$
 (14.3)

будем называть σ -алгеброй, порожденной случайным вектором ξ . Эта σ -алгебра обозначается $\sigma\{\xi\}$ или \mathcal{F}^{ξ} .

Определение 14.11. Функция

$$F_{\varepsilon}(x_1,\ldots,x_n) = \mathbf{P}\{\xi_1 \leqslant x_1,\ldots,\xi_n \leqslant x_n\}, \quad x_1,\ldots,x_n \in \mathbb{R}^1,$$

называется функцией распределения n-мерного случайного вектора ξ .

Функция распределения случайного вектора обладает всеми свойствами функции распределения меры на измеримом пространстве $\{\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)\}$ (см. определение 13.12, которое полностью применимо с учетом соотношения $\mu(\mathbb{R}^n)=1$).

Для любого борелевского множества $B \in \mathcal{B}(\mathbb{R}^n)$ вероятность случайного события $\{\xi \in B\}$ вычисляется как интеграл Лебега:

$$\mathbf{P}_{\xi}(B) = \mathbf{P}\{\xi \in B\} = \int_{B} dF_{\xi}(x_1, \dots, x_n).$$

Мера $\mathbf{P}_{\xi}(\cdot)$ на $\mathcal{B}(\mathbb{R}^n)$ — закон распределения случайного вектора ξ , заданный с помощью $F_{\xi}(x_1,\ldots,x_n)$. Если $\mathbf{P}_{\xi}(\cdot)$ имеет плотность, т. е.

$$\mathbf{P}\{\xi \in B\} = \int_{B} p_{\xi}(y_1, \dots, y_n) \, dy_1 \dots dy_n \quad \forall \, B \in \mathcal{B}(\mathbb{R}^n),$$

то

$$F_{\xi}(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p_{\xi}(y_1,\ldots,y_n) dy_1 \ldots dy_n.$$

Определение 14.12. Случайные величины $\{\xi_1, \ldots, \xi_n\}$ независимы в совокупности, если для произвольного набора множеств $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^1)$ случайные события $\{\xi_1 \in B_1\}, \ldots, \{\xi_n \in B_n\}$ независимы в совокупности.

Теорем а 14.2. Для того чтобы случайные величины $\{\xi_1, \ldots, \xi_n\}$ были независимы в совокупности, необходимо и достаточно, чтобы для всех $x_1, \ldots, x_n \in \mathbb{R}^1$

$$F_{\xi}(x_1, \dots, x_n) = \prod_{k=1}^{n} F_{\xi_k}(x_k).$$

Общий способ определения независимости случайных событий и величин состоит в следующем. Пусть $\mathcal{F}_1 \subseteq \mathcal{F}$ и $\mathcal{F}_2 \subseteq \mathcal{F}$ — некоторые σ -алгебры случайных событий. Системы \mathcal{F}_1 и \mathcal{F}_2 называются независимыми, если независимы любые два события $A \in \mathcal{F}_1$ и $B \in \mathcal{F}_2$, т. е. $\mathbf{P}\{AB\} = \mathbf{P}\{A\}\mathbf{P}\{B\}$.

Теперь нетрудно определить понятие независимости СВ ξ и η : ξ и η независимы тогда и только тогда, когда независимы σ -алгебры \mathcal{F}^{ξ} и \mathcal{F}^{η} . В частности, СВ ξ не зависит от случайного события A, если A и \mathcal{F}^{ξ} независимы (т. е. независимы A и любое $B \in \mathcal{F}^{\xi}$). Эти понятия будут использованы в дальнейшем при построении условного математического ожидания.

В общем случае случайная величина ξ может принимать комплексные значения, т. е. $\xi = \alpha + i\beta$, где α , β — CB, заданные на $\{\Omega, \mathcal{F}, \mathbf{P}\}$, а $i^2 = -1$. Изучение комплексной CB фактически сводится к изучению двумерного случайного вектора $\{\alpha, \beta\}^*$.

Приведем примеры некоторых наиболее важных законов распределения.

1) Дискретная СВ ξ имеет биномиальное распределение с параметрами (N; p), где $0 , и обозначается <math>\xi \sim \mathrm{Bi}(N; p)$, если

$$\mathbf{P}\{\xi = m\} = C_N^m p^m q^{N-m}, \quad m = 0, 1, \dots, N,$$

где $C_N^m=\frac{N!}{m!(N-m)!}$ — число сочетаний из N по $m,\ q=1-p.$ Распределение $\mathrm{Bi}(1;p)$ называется распределением Бернулли.

2) Дискретная СВ ξ имеет распределение Пуассона с параметром $\lambda > 0$ и обозначается $\xi \sim \Pi(\lambda)$, если

$$\mathbf{P}\{\xi = m\} = \frac{\lambda^m}{m!} e^{-\lambda}, \quad m = 0, 1, \dots$$

3) Непрерывная СВ ξ имеет равномерное распределение на отрезке [a,b] и обозначается $\xi \sim \mathcal{R}(a,b),$ если ее плотность распределения имеет вид

$$p_{\,\xi}(x) = \left\{ \begin{array}{ll} 1/(b-a), & \text{если} \quad x \in [a,b], \\ 0, & \text{если} \quad x \notin [a,b]. \end{array} \right.$$

4) Непрерывная СВ ξ имеет экспоненциальное (или показательное) распределение с параметром $\lambda>0$ и обозначается $\xi\sim E(\lambda)$, если

$$p_{\,\xi}(x) = \left\{ \begin{array}{ll} \lambda e^{\,-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{array} \right.$$

5) Непрерывная СВ ξ имеет гауссовское (или нормальное) распределение с параметрами $(m; \sigma^2)$, где $\sigma > 0$, если

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\}, \quad x \in \mathbb{R}^1.$$

Для гауссовского распределения используется обозначение $\mathcal{N}(m;\sigma^2).$

Числовые характеристики этих распределений приведены в следующем пункте.

14.3. Математическое ожидание.

Определение 14.13. Математическим ожиданием (или средним) СВ ξ , определенной на $\{\Omega, \mathcal{F}, \mathbf{P}\}$, называется число

$$\mathbf{M}\{\xi\} = m_{\xi} = \int_{\Omega} \xi(\omega) \,\mathbf{P}(d\omega). \tag{14.4}$$

Математическое ожидание определено, если интеграл Лебега в правой части равенства (14.4) существует.

Таким образом, математическое ожидание СВ ξ есть интеграл Лебега от функции $\xi(\omega)$ на Ω по вероятностной мере \mathbf{P} . Если $\mathbf{P}_{\xi}(\cdot)$ — закон распределения СВ ξ на $\mathcal{B}(\mathbb{R}^1)$, а $F_{\xi}(y)$ — соответству ющая функция распределения, то $\mathbf{M}\{\xi\}$ можно вычислить следующим образом:

$$\mathbf{M}\{\xi\} = \int_{\mathbb{P}^1} y \, \mathbf{P}_{\xi}(dy) = \int_{-\infty}^{\infty} y \, dF_{\xi}(y), \tag{14.5}$$

причем первый интеграл понимается как интеграл Лебега по мере $\mathbf{P}_{\xi}(\cdot)$, а второй — как интеграл Лебега—Стилтьеса. Существование интегралов в правой части (14.5) вытекает из существования математического ожидания, и наоборот, из существования интегралов следует

существование математического ожидания. Формула (14.5) следует из (14.4) и теоремы 13.15 о замене переменной в интеграле Лебега.

Если функция распределения $F_{\xi}(x)$ является комбинацией абсолютно непрерывной и дискретной составляющих, т. е. допускает представление вида

$$F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(y) \, dy \, + \sum_{k: a_{k} \leq x} p_{k},$$

где $p_{\xi}(y)\geqslant 0$, а $p_{k}>0$ — величина скачка в точке разрыва a_{k} , то (14.5) принимает вид

$$\mathbf{M}\{\xi\} = \int_{-\infty}^{\infty} y p_{\xi}(y) \, dy + \sum_{k} p_{k} a_{k}.$$

CB ξ называется центрированной, если $\mathbf{M}\{\xi\}=0$.

Основные свойства математического ожидания вытекают из свойств интеграла Лебега (см. п. 13.5).

- 1) Математические ожидания $\mathbf{M}\{\xi\}$ и $\mathbf{M}\{|\xi|\}$ существуют и конечны одновременно, причем $|\mathbf{M}\{\xi\}| \leqslant \mathbf{M}\{|\xi|\}$.
- 2) $\mathbf{M}\{I_A\}=\int\limits_{\Omega}I_A(\omega)\,\mathbf{P}(d\omega)=\mathbf{P}\{A\}$, где I_A индикатор события $A\in\mathcal{F}$
 - 3) Если $\mathbf{M}\{\xi\}$ существует, то для любой константы λ

$$\mathbf{M}\{\lambda\xi\} = \lambda\mathbf{M}\{\xi\}.$$

4) Если $\mathbf{M}\{\xi\}$ и $\mathbf{M}\{\eta\}$ существуют и конечны, то

$$\mathbf{M}\{\xi + \eta\} = \mathbf{M}\{\xi\} + \mathbf{M}\{\eta\}.$$

- 5) Если $\xi \leqslant \eta$, то $\mathbf{M}\{\xi\} \leqslant \mathbf{M}\{\eta\}$.
- 6) Если $\varphi(x)$ борелевская функция, то

$$\mathbf{M}\{\varphi(\xi)\} = \int_{-\infty}^{\infty} \varphi(x) \, dF_{\xi}(x),$$

где математическое ожидание и интеграл существуют или не существуют одновременно.

7) Если $\mathbf{M}\{\xi\}$ определено, то для каждого $A \in \mathcal{F}$ существует

$$\mathbf{M}\{\xi I_A\} = \int_A \xi(\omega) \, \mathbf{P}(d\omega).$$

8) Если $\xi\geqslant 0$ (P-п.н.), а также $\mathbf{M}\{\xi\}<\infty$, то функция множества $Q\{A\}=\mathbf{M}\{\xi I_A\},\ A\in\mathcal{F},$ является конечной мерой на $\mathcal{F}.$

9) Если $\xi\geqslant 0$ (**P**-п.н.), $\mathbf{M}\{\xi\}<\infty$ и $\varepsilon>0$, то

$$\mathbf{P}\{\xi \geqslant \varepsilon\} \leqslant \frac{\mathbf{M}\{\xi\}}{\varepsilon}.$$

10) Если $\mathbf{M}\{|\xi|^p\}<\infty$ при p>0, то выполняется неравенство Маркова

$$\mathbf{P}\{|\xi| \geqslant \varepsilon\} \leqslant \frac{\mathbf{M}\{|\xi|^p\}}{\varepsilon^p}.$$

Если $\xi = \{\xi_1, \dots, \xi_n\}^* - n$ -мерный случайный вектор, то его математическим оэкиданием называется вектор

$$\mathbf{M}\{\xi\} = \left\{ \mathbf{M}\{\xi_1\}, \dots, \mathbf{M}\{\xi_n\} \right\}^*.$$

Определение 14.14. Комплексная функция $\Psi_{\xi}(\lambda)$, $\lambda \in \mathbb{R}^n$,

$$\Psi_{\xi}(\lambda) = \mathbf{M} \Big\{ e^{i\lambda^* \xi} \Big\} = \int_{\mathbb{R}^n} e^{i\lambda^* x} dF_{\xi}(x),$$

называется $xарактеристической функцией распределения <math>F_{\xi}(x)$.

Теорема 14.3. Характеристическая функция однозначно определяет функцию распределения, т. е. если СВ ξ и СВ η имеют одну характеристическую функцию $\Psi_{\xi}(\lambda) = \Psi_{\eta}(\lambda), \ \lambda \in \mathbb{R}^{n}, \ moreover F_{\xi}(x) = F_{\eta}(x), \ x \in \mathbb{R}^{n}$.

Использование аппарата характеристических функций позволяет исследовать зависимость случайных величин в силу следующего утверждения.

T е о р е м а 14.4. Случайные величины $\{\xi_i,\ i=1,\ldots,n\}$ независимы тогда и только тогда, когда

$$\Psi_{\xi}(\lambda_1, \ldots, \lambda_n) = \prod_{i=1}^n \Psi_{\xi_i}(\lambda_i),$$

где $\Psi_{\xi}(\lambda_1,\ldots,\lambda_n)$ — характеристическая функция случайного вектора $\xi=\{\xi_1,\ldots,\xi_n\}^*,\ a\ \Psi_{\xi_i}(\lambda_i)$ — характеристическая функция $CB\ \xi_i,\ i=1,\ldots,n.$

Определение 14.15. Дисперсией $\mathbf{D}\{\xi\}$ СВ ξ называется число

$$\mathbf{D}\{\xi\} = D_{\xi} = \mathbf{M}\{|\xi - m_{\xi}|^{2}\} = \int_{-\infty}^{\infty} |y - m_{\xi}|^{2} dF_{\xi}(y).$$

Из определения и свойств интеграла Лебега следует:

- 1) $\mathbf{D}\{\xi\} \geqslant 0$;
- 2) $\mathbf{D}\{a\xi + b\} = |a|^2 \mathbf{D}\{\xi\}, \text{ если } a, b = \text{const};$

3)
$$\mathbf{D}\Big\{\sum_{k=1}^n \xi_k\Big\} = \sum_{k=1}^n \mathbf{D}\{\xi_k\}$$
, если $\mathbf{D}\{\xi_k\} < \infty$, а СВ $\{\xi_k\}$ — незави-

4) $\mathbf{D}\{\xi\} = \mathbf{M}\{|\xi|^2\} - |m_{\xi}|^2;$

5) если $\mathbf{M}\{|\xi|^2\}<\infty$, то выполнено неравенство Чебышева

$$\mathbf{P}\{|\xi - m_{\xi}| \geqslant \varepsilon\} \leqslant \frac{\mathbf{D}\{\xi\}}{\varepsilon^2}.$$

Определение 14.16. *Ковариацией* случайных величин ξ и η называется величина

$$\mathbf{cov}\{\xi,\eta\} = \mathbf{M}\Big\{(\xi - m_{\xi})\overline{(\eta - m_{\eta})}\Big\}\,,$$

где $\overline{(\cdot)}$ — знак комплексного сопряжения. Если $\xi = \{\xi_1, \dots, \xi_n\}^*$ — n-мерный случайный вектор, то его ковариационной матрицей называется матрица $R_\xi = \{\mathbf{cov}\{\xi_i, \xi_j\}\}.$ Очевидно, что $R_{\xi}=\mathbf{M}\left\{ \overline{\xi}^{*}\right\} -m_{\xi}\overline{m_{\xi}}^{*}.$ Перечислим важнейшие свойства ковариации.

1) Если $\mathbf{M}\{|\xi|^2\}<\infty,\,\mathbf{M}\{|\eta|^2\}<\infty,\,$ то ковариация СВ $\xi,\,\eta$ существует и удовлетворяет неравенству Коши-Буняковского:

$$|\mathbf{cov}\{\xi,\eta\}|^2 \leqslant \mathbf{D}\{\xi\}\mathbf{D}\{\eta\}.$$

- 2) Если $\mathbf{M}\{\xi\} = \mathbf{M}\{\eta\} = 0$, то $\mathbf{cov}\{\xi,\eta\} = (\xi,\eta)$ скалярное произведение случайных величин ξ, η .
 - 3) Если ξ и η независимы, то $\mathbf{cov}\{\xi,\eta\} = 0$.

4) $\mathbf{D}\{\xi\} = \mathbf{cov}\{\xi, \xi\}.$ 5) $\mathbf{D}\{\xi + \eta\} = \mathbf{D}\{\xi\} + \mathbf{D}\{\eta\} + 2\mathbf{cov}\{\xi, \eta\}.$ Если $\mathbf{cov}\{\xi, \eta\} = 0$, то CB ξ и η называются некоррелированными или *ортогональными*, что обозначается $\xi \perp \eta$.

Приведем числовые характеристики (т. е. математические ожидания и дисперсии) случайных величин, рассмотренных в конце п. 14.2.

1) Биномиальное распределение с параметрами (N; p):

$$m_{\xi} = Np, \quad D_{\xi} = Npq.$$

2) Распределение Пуассона с параметром $\lambda > 0$:

$$m_{\xi} = D_{\xi} = \lambda.$$

3) Равномерное распределение на отрезке [a, b]:

$$m_{\xi} = \frac{a+b}{2}, \quad D_{\xi} = \frac{(b-a)^2}{12}.$$

4) Экспоненциальное распределение с параметром $\lambda > 0$:

$$m_{\xi} = \frac{1}{\lambda}, \quad D_{\xi} = \frac{1}{\lambda^2}.$$

5) Гауссовское распределение с параметрами $(m; \sigma^2), \sigma > 0$:

$$m_{\xi} = m, \quad D_{\xi} = \sigma^2.$$

14.4. Последовательности случайных величин. Будем далее предполагать, что случайные величины $\{\xi_n, n=1,2,\dots\}$ заданы на одном и том же вероятностном пространстве $\{\Omega, \mathcal{F}, \mathbf{P}\}$.

Определение 14.17. Последовательность случайных величин $\{\xi_n\}$ называется сходящейся почти наверное (Р-п.н.) к СВ ξ , если

$$\mathbf{P}\big\{\omega\in\Omega\colon \lim_{n\to\infty}\xi_n(\omega)=\xi(\omega)\big\}=1.$$

В этом случае используются обозначения: $\xi_n \to \xi$ (P-п.н.) или $\xi_n \xrightarrow{\text{п.н.}} \xi, \ n o \infty,$ а также говорят, что ξ_n сходится к ξ c вероят-

Следующие результаты вытекают из теорем о предельном переходе под знаком интеграла Лебега и задают правила предельного перехода под знаком математического ожидания.

 ${
m T}$ е о р е м а 14.5. Если последовательность $\{\xi_n\}$ сходится κ ξ $(\mathbf{P}\text{-}n.н.)$ и найдется CB η , такая, что $|\xi_n|\leqslant \eta$ $(\mathbf{P}\text{-}n.н.)$ для всякого n $u \mathbf{M} \{\eta\} < \infty, mo$

$$\mathbf{M}\{|\xi|\}<\infty, \quad \mathbf{M}\{\xi_n\}\to \mathbf{M}\{\xi\}$$

u

$$\mathbf{M}\{|\xi_n - \xi|\} \to 0 \quad npu \quad n \to \infty.$$

- T е о р е м а 14.6. Пусть η , ξ_1 , ξ_2 , ... случайные величины. 1) Если $\xi_n \geqslant \eta$ для всех $n \geqslant 1$, где $\mathbf{M}\{\eta\} > -\infty$, $u \ \xi_n \uparrow \xi$ (\mathbf{P} -n.н.), $mo \ \mathbf{M}\{\xi_n\} \uparrow \mathbf{M}\{\xi\} \ npu \ n \to \infty.$
- 2) Ecau $\xi_n \leqslant \eta$ das $\operatorname{Bcex} n \geqslant 1$, $\operatorname{Fde} \mathbf{M}\{\eta\} < \infty$, $u \xi_n \downarrow \xi$ (P-n.H.), mo $\mathbf{M}\{\xi_n\} \downarrow \mathbf{M}\{\xi\} \ npu \ n \to \infty.$

 ${
m T}$ еорема 14.7. Пусть последовательность $\{\xi_n\}$ неотрицательных случайных величин сходится $(\mathbf{P}$ -п.н.) к \widetilde{CB} ξ , причем существует такая константа $K < \infty$, что $\mathbf{M}\{\xi_n\} \leqslant K$ для всех n. Тогда $\mathbf{M}\{\xi\}$ cywecmbyem u $\mathbf{M}\{\xi\} \leqslant K$.

Определение 14.18. Последовательность $\{\xi_n\}$ случайных величин называется cxodsuейся по вероятности к CB ξ , если для любого $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbf{P}\{|\xi_n - \xi| > \varepsilon\} = 0.$$

Теорема 14.8. У любой последовательности случайных величин $\{\xi_n, n=1,2,\dots\}$, сходящейся по вероятности κ ξ , найдется подпоследовательность $\{\xi_{n_k}\}$, такая, что $\xi_{n_k} \xrightarrow{\text{п.н.}} \xi$ при $k \to \infty$.

Определение 14.19. Последовательность $\{\xi_n\}$ случайных величин называется $\phi y n d$ аментальной по вероятности, если для любого $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbf{P}\{|\xi_n - \xi_m| > \varepsilon\} = 0.$$

T е о р е м а 14.9. Для сходимости последовательности $\{\xi_n\}$ по вероятности необходимо и достаточно, чтобы последовательность была фундаментальной.

Аналогичный критерий существует и для сходимости (Р-п.н.).

Теорема 14.10. Для сходимости последовательности $\{\xi_n\}$ $(\mathbf{P}$ -n.n.) необходимо и достаточно, чтобы последовательность была фундаментальной $(\mathbf{P}$ -n.n.), m. e. для любого $\varepsilon > 0$

$$\lim_{n\to\infty} \mathbf{P}\{\sup_{k\geqslant 0} |\xi_{n+k} - \xi_n| > \varepsilon\} = 0.$$

Определение 14.20. Последовательность $\{\xi_n\}$ случайных величин называется сходящейся в среднем порядка p>0 к СВ ξ , если

$$\lim_{n \to \infty} \mathbf{M}\{|\xi_n - \xi|^p\} = 0.$$

При p=2 этот вид сходимости называется сходимостью в среднем квадратическом (или с.к.-сходимостью) и обозначается $\xi=\lim_{n\to\infty}\xi_n$ или $\xi_n\xrightarrow{\text{с.к.}}\xi$, $n\to\infty$. Среднеквадратическая сходимость имеет особое значение в теории случайных процессов.

Приведем важнейшие свойства с.к.-сходимости.

1) Критерий Коши. Для того чтобы существовал c.к.-предел ξ последовательности СВ $\{\xi_n\}$ при $n \to \infty$, необходимо и достаточно, чтобы $\{\xi_n\}$ была фундаментальной в с.к.-смысле:

$$\mathbf{M}\{|\xi_n - \xi_m|^2\} \to 0$$
 при $n, m \to \infty$.

2) Пусть $\xi_n \xrightarrow{\text{с.к.}} \xi$ при $n \to \infty$, причем $\mathbf{M}\{|\xi_n|^2\} < \infty$, тогда $\mathbf{M}\{|\xi|^2\} < \infty$ и

$$\lim_{n\to\infty}\mathbf{M}\{\xi_n\}=\mathbf{M}\left\{\underset{n\to\infty}{\text{l.i.m.}}\,\xi_n\right\}=\mathbf{M}\{\xi\}\,;$$

$$\lim_{n \to \infty} \mathbf{M}\{|\xi_n|^2\} = \mathbf{M}\{|\lim_{n \to \infty} \xi_n|^2\} = \mathbf{M}\{|\xi|^2\}.$$

3) Если $\{\xi_n\}$, $\{\eta_n\}$ — последовательности СВ, $\mathbf{M}\{|\xi_n|^2\}<\infty$, $\mathbf{M}\{|\eta_n|^2\}<\infty$ и $\xi_n\xrightarrow{\mathrm{C.K.}}\xi$, $\eta_n\xrightarrow{\mathrm{C.K.}}\eta$ при $n\to\infty$, то

$$\mathbf{M}\{\xi_n\overline{\eta}_n\} \to \mathbf{M}\{\xi\overline{\eta}\}$$
 при $n \to \infty$.

4) Лемма Лоэва. Последовательность СВ $\{\xi_n\}$ имеет с.к.-предел тогда и только тогда, когда существует $\lim_{n,m\to\infty}\mathbf{M}\big\{\xi_n\overline{\xi}_m\big\}=c$. При этом $c=\mathbf{M}\big\{|\xi|^2\big\}$, где $\xi=\lim_{n\to\infty}\xi_n$.

Наиболее слабый вид сходимости — сходимость последовательности по распределению.

О пределение 14.21. Последовательность $\{\xi_n, n=1,2,\ldots\}$ случайных величин называется cxodsumeйся по распределению (или слабо cxodsumийся) к СВ ξ , если для любой равномерно ограниченной непрерывной функции $f(x), x \in \mathbb{R}^1$,

$$\lim_{n\to\infty} \mathbf{M}\{f(\xi_n)\} = \mathbf{M}\{f(\xi)\}.$$

Если через $F_n(x)$ обозначить функцию распределения ξ_n , а через F(x) — функцию распределения ξ , то для слабой сходимости последовательности $\{\xi_n\}$ к ξ необходимо и достаточно, чтобы $F_n(x) \to F(x)$ при $n \to \infty$ в каждой точке $x \in \mathbb{R}^1$, в которой F(x) непрерывна. При этом, если F(x) — непрерывная функция, то $\{F_n(x)\}$ сходится к F(x) равномерно на \mathbb{R}^1 , т. е.

$$\sup_{x \in \mathbb{R}^1} |F_n(x) - F(x)| \to 0, \quad n \to \infty.$$

Соотношения между всеми типами сходимости описываются теоремой.

Теорема 14.11. Справедливы следующие утверждения:

- 1) $cxodumocmь (P-n.н.) \Longrightarrow cxodumocmь по вероятности;$
- 2) сходимость в среднем порядка $p > 0 \implies$ сходимость по веро-ятности;
- 3) сходимость по вероятности \implies сходимость по распределению:
- 4) если ξ_n слабо сходится κ константе a, то ξ_n сходится κ a u по вероятности.
- **14.5. Условное математическое ожидание.** Пусть задано вероятностное пространство $\{\Omega, \mathcal{F}, \mathbf{P}\}, \mathcal{G}$ некоторая σ -алгебра случайных событий, т. е. $\mathcal{G} \subseteq \mathcal{F}$, а ξ CB, такая, что $\mathbf{M}\{|\xi|\} < \infty$.

Определение 14.22. Условным математическим ожиданием $CB\ \xi$ относительно $\mathcal G$ называется случайная величина, обозначаемая $\mathbf M\{\xi\mid \mathcal G\}$ и удовлетворяющая следующим условиям:

- $(1) \ \mathbf{M} \{ \xi \mid \mathcal{G} \}$ является \mathcal{G} -измеримой;
- 2) для любого множества $A \in \mathcal{G}$ выполняется равенство

$$\int_{A} \xi(\omega) \mathbf{P}(d\omega) = \int_{A} \mathbf{M} \{ \xi \mid \mathcal{G} \} (\omega) \mathbf{P}(d\omega).$$
 (14.6)

T е о р е м а 14.12. Условное математическое ожидание $CB \xi$ определено единственным образом (\mathbf{P} -n. \mathbf{n} .).

Свойства условного математического ожидания. Следующие свойства условного математического ожидания непосредственно вытекают из определения 14.22.

- 1) Если $\xi = C = \text{const } (\mathbf{P}\text{-п.н.}), \text{ то } \mathbf{M}\{\xi \mid \mathcal{G}\} = C \ (\mathbf{P}\text{-п.н.}).$
- 2) Если $\xi \leqslant \eta$ (Р-п.н.), то $M\{\xi \mid \mathcal{G}\} \leqslant M\{\eta \mid \mathcal{G}\}$ (Р-п.н.).
- 3) $|\mathbf{M}\{\xi \mid \mathcal{G}\}| \leqslant \mathbf{M}\{|\xi| \mid \mathcal{G}\}$ (**P**- π .H.).
- 4) Если a,b константы, а ξ,η случайные величины, такие, что $\mathbf{M}\{|\xi|\}<\infty, \, \mathbf{M}\{|\eta|\}<\infty, \,$ то

$$\mathbf{M}\{a\xi + b\eta \mid \mathcal{G}\} = a\,\mathbf{M}\{\xi \mid \mathcal{G}\} + b\,\mathbf{M}\{\eta \mid \mathcal{G}\} \quad (\mathbf{P}\text{- Π. H.}).$$

5) Пусть $\mathcal{G} = \{\varnothing, \Omega\}$ — тривиальная σ -алгебра, тогда

$$\mathbf{M}\{\xi\mid\mathcal{G}\}=\mathbf{M}\{\xi\}\quad (\mathbf{P}\text{-}\boldsymbol{\pi}.\boldsymbol{\mathrm{H}}.).$$

- 6) Если СВ ξ измерима относительно \mathcal{G} , то $\mathbf{M}\{\xi \mid \mathcal{G}\} = \xi$ (**Р**-п.н.).
- 7) $\mathbf{M}\{\mathbf{M}\{\xi \mid \mathcal{G}\}\} = \mathbf{M}\{\xi\} \ (\mathbf{P}\text{-}\pi.H.).$
- 8) Если $\mathcal{G}_1 \subseteq \mathcal{G}_2$, то

$$\mathbf{M}\{\mathbf{M}\{\xi \mid \mathcal{G}_2\} \mid \mathcal{G}_1\} = \mathbf{M}\{\xi \mid \mathcal{G}_1\} \quad (\mathbf{P}\text{-}\Pi.H.).$$

9) Если $\mathcal{G}_2 \subseteq \mathcal{G}_1$, то

$$\mathbf{M}\{\mathbf{M}\{\xi \mid \mathcal{G}_2\} \mid \mathcal{G}_1\} = \mathbf{M}\{\xi \mid \mathcal{G}_2\} \quad (\mathbf{P}\text{-}\textsc{ii.H.}).$$

10) Если CB ξ не зависит от \mathcal{G} (т. е. \mathcal{F}^{ξ} не зависит от \mathcal{G}), то

$$\mathbf{M}\{\xi \mid \mathcal{G}\} = \mathbf{M}\{\xi\} \quad (\mathbf{P}\text{-}\pi.H.).$$

11) Пусть η измерима относительно \mathcal{G} и $\mathbf{M}\{|\xi\eta|\}<\infty$, тогда

$$\mathbf{M}\{\xi\eta\mid\mathcal{G}\}=\eta\,\mathbf{M}\{\xi\mid\mathcal{G}\}\quad(\mathbf{P}\text{-}\Pi.H.).$$

12) Неравенство Иенсена. Пусть g(x) — выпуклая вниз функция, такая, что $\mathbf{M}\{|g(\xi)|\}<\infty$, тогда

$$g(\mathbf{M}\{\xi \mid \mathcal{G}\}) \leqslant \mathbf{M}\{g(\xi) \mid \mathcal{G}\}$$
 (P-II.H.).

13) Пусть η — произвольная \mathcal{G} -измеримая случайная величина. Если $\mathbf{M}\{|\xi|^2\}<\infty,\,\mathbf{M}\{|\eta|^2\}<\infty,\,$ то

$$\mathbf{M}\big\{|\xi - \mathbf{M}\{\xi \mid \mathcal{G}\}|^2\big\} \leqslant \mathbf{M}\big\{|\xi - \eta|^2\big\} \quad (\mathbf{P}\text{-π.H.}).$$

Определение 14.23. СВ $\mathbf{M}\{\xi \mid \mathcal{F}^{\eta}\} = \mathbf{M}\{\xi \mid \eta\}$, где $\mathcal{F}^{\eta} = \sigma\{\eta\}$, называется условным математическим ожиданием СВ ξ относительно СВ $\eta \in \mathbb{R}^n$.

Теорема 14.13. Существует борелевская функция $g(x), x \in \mathbb{R}^n$, такая, что $\mathbf{M}\{\xi \mid \eta\} = g(\eta)$ (**P**-n.н.).

Пусть ξ — оцениваемая СВ по наблюдениям, образующим случайный вектор $\eta \in \mathbb{R}^n$, а $g(x), \ x \in \mathbb{R}^n$, — борелевская функция. Тогда будем говорить, что $\widetilde{\xi} = g(\eta)$ — допустимая оценка для ξ по наблюдениям η .

Определение 14.24. Допустимая оценка $\hat{\xi} = \hat{g}(\eta)$ называется $c.\kappa.$ -оптимальной оценкой для ξ по наблюдениям η , если для любой допустимой оценки $\tilde{\xi} = g(\eta)$ выполнено

$$\mathbf{M}\{|\xi-\widehat{\xi}|^2\} \leqslant \mathbf{M}\{|\xi-\widetilde{\xi}|^2\}.$$

Теорема 14.14. Пусть $\mathbf{M}\{|\xi|^2\}<\infty,$ тогда с.к.-оптимальная оценка имеет вид

$$\widehat{\xi} = \mathbf{M}\{\xi \mid \eta\}$$
 (**P**-п.н.).

Замечание. Предположение о том, что g(x) — борелевская функция, означает, что $\widetilde{\xi}=g(\eta)$ — случайная величина. Утверждение теоремы 14.14 имеет важное практическое значение, так как мы получаем общий алгоритм построения с.к.-оптимальной оценки $\widehat{\xi}$ для СВ ξ по наблюдениям η .

Определение 14.25. Пусть $A \in \mathcal{F}$ и $\mathbf{P}\{A\} > 0$. Условным математическим ожиданием СВ ξ относительно случайного события A называется СВ

$$\mathbf{M}\{\xi \mid A\} = \frac{\mathbf{M}\{\xi I_A\}}{\mathbf{P}\{A\}} = \frac{1}{\mathbf{P}\{A\}} \int_A \xi(\omega) \, \mathbf{P}(d\omega). \tag{14.7}$$

Пусть события H_1, \ldots, H_N образуют систему вероятностных гипотез (см. п. 14.1). Если $\mathbf{M}\{\xi\}$ существует, то его можно вычислить по формуле полного математического ожидания:

$$\mathbf{M}\{\xi\} = \sum_{k=1}^{n} \mathbf{P}\{H_k\} \mathbf{M}\{\xi \mid H_k\},\,$$

где $\mathbf{M}\{\xi \mid H_k\}$ вычисляется по формуле (14.7).

В заключение пункта рассмотрим практический способ вычисления функции $\mathbf{M}\{\xi\mid \eta=y\}=\widehat{g}(y),\ y\in\mathbb{R}^n,$ где $\xi\in\mathbb{R}^m,\ \eta\in\mathbb{R}^n.$ Пусть существует совместная плотность распределения $p_{\xi,\eta}(x,y)$ случайных векторов ξ и $\eta.$ Тогда

$$\widehat{g}(y) = \int_{\mathbb{R}^m} x \, p_{\xi \mid \eta}(x \mid y) \, dx, \tag{14.8}$$

где $p_{\xi|\eta}(x\mid y)=p_{\xi,\eta}(x,y)/p_{\eta}(y)$ — условная плотность CB ξ при условии, что $\eta=y;$ $p_{\eta}(y)=\int\limits_{\mathbb{R}^n}p_{\xi,\eta}(x,y)\,dx$ — n-мерная плотность CB $\eta,$

причем $p_{\eta}(y) \neq 0$. Если же $p_{\eta}(y) = 0$, то полагают, что $p_{\xi|\eta}(x \mid y) = 0$. Формула (14.8) позволяет вычислить реализацию оценки $\widehat{\xi} = \widehat{g}(\eta)$ при условии, что имеется реализация $y \in \mathbb{R}^n$ случайного вектора наблюдений $\eta \in \mathbb{R}^n$.

14.6. Гауссовские случайные величины и векторы.

Определение 14.26. Функция

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy, \quad x \in \mathbb{R}^1,$$

называется интегралом вероятностей или функцией Лапласа.

Определение 14.27. Случайная величина $\xi \in \mathbb{R}^1$ называется гауссовской или нормальной с параметрами $(m; \sigma^2)$, где $\sigma > 0$, если

$$F_{\xi}(x) = \mathbf{P}\{\xi \leqslant x\} = \Phi\left(\frac{x-m}{\sigma}\right).$$
 (14.9)

Так как функция Лапласа $\Phi(x)$ непрерывно дифференцируема на \mathbb{R}^1 , распределение $F_{\mathcal{E}}(x)$ гауссовской СВ имеет плотность

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\}, \quad \sigma > 0.$$

Из определения 14.27 следует, что

$$\mathbf{M}\{\xi\} = m, \qquad \mathbf{D}\{\xi\} = \sigma^2.$$

Для обозначения гауссовской СВ будем писать $\xi \sim \mathcal{N}(m; \sigma^2)$. Вероятность попадания ξ в произвольный интервал $(\alpha, \beta) \subseteq \mathbb{R}^1$ можно вычислить по следующей известной формуле:

$$\mathbf{P}\{\alpha < \xi < \beta\} = \Phi\left(\frac{\beta - m}{\sigma}\right) - \Phi\left(\frac{\alpha - m}{\sigma}\right).$$

Случайная величина ξ с распределением $\mathcal{N}(0;1)$ называется *стан-дартной гауссовской*. Из (14.9) следует, что ее функция распределения совпадает с $\Phi(x)$.

Замечание. Свойство гауссовости распределения сохраняется при линейном преобразовании СВ ξ . Пусть $\xi \sim \mathcal{N}(m_{\xi}; D_{\xi})$, а $\eta = \alpha \xi + \beta$, где $\alpha, \beta \in \mathbb{R}^1$, тогда $\eta \sim \mathcal{N}(m_{\eta}; D_{\eta})$, где $m_{\eta} = \alpha m_{\xi} + \beta$; $D_{\eta} = \alpha^2 D_{\xi}$.

Для описания *гауссовского случайного вектора* (т. е. упорядоченной системы гауссовских СВ) удобно воспользоваться аппаратом характеристических функций.

Пусть $\xi=\{\xi_1,\ldots,\xi_n\}^*$ — вещественный случайный вектор с математическим ожиданием $m_\xi=\{m_{\xi_1},\ldots,m_{\xi_n}\}^*$ и ковариационной матрицей $R_\xi=\{\mathbf{cov}\{\xi_i,\xi_j\}\}_{i,j=1,\ldots n}$. Пусть также $x=\{x_1,\ldots,x_n\}^*\in \mathbb{R}^n,\, F_\xi(x)$ — n-мерная функция распределения СВ ξ , а i — мнимая единица, т. е. $i^2=-1$.

Теперь мы можем ввести понятие гауссовского случайного вектора. О пределение 14.28. Случайный вектор $\xi \in \mathbb{R}^n$ имеет n-мерное гауссовское распределение с параметрами $(m_{\xi}; R_{\xi})$, если его характеристическая функция имеет вид

$$\Psi_\xi(\lambda) = \exp\bigl\{i\lambda^* m_{\,\xi} - \frac{1}{2}\lambda^* R_\xi \lambda\bigr\}, \quad \lambda \in \mathbb{R}^n,$$

где m_{ξ} — математическое ожидание, а R_{ξ} — ковариационная матрица.

Замечания. 1) Нетрудно проверить, что любая компонента ξ_k гауссовского вектора ξ имеет распределение $\mathcal{N}(m_k; D_k)$, где $m_k - k$ -й элемент вектора m_ξ , а $D_k - k$ -й диагональный элемент матрицы R_ξ .

2) Если матрица $R_{\xi} > 0$ (т. е. положительно определена), то $F_{\xi}(\vec{x})$ имеет плотность распределения $p_{\xi}(x), \ x \in \mathbb{R}^n$:

$$p_{\xi}(x) = (2\pi)^{-n/2} (\det[R_{\xi}])^{-1/2} \exp\left\{-\frac{1}{2}(x-m_{\xi})^* R_{\xi}^{-1}(x-m_{\xi})\right\},$$

где $\det[R_{\xi}] > 0$ — определитель матрицы R_{ξ} .

Гауссовские векторы обладают серией замечательных свойств, важнейшие из которых перечислены ниже.

- 1) Если $\mathbf{cov}\{\xi,\eta\} = \mathbf{M}\{\xi\eta^*\} m_{\xi}m_{\eta}^* = 0$, а вектор $\gamma = \{\xi^*,\eta^*\}^*$ гауссовский, то ξ и η независимы.
- 2) Пусть $\xi \sim \mathcal{N}(m_{\xi}; R_{\xi})$, а $\eta = A\xi + b$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, тогда $\eta \sim \mathcal{N}(m_{\eta}; R_{\eta})$, где

$$m_{\eta} = Am_{\xi} + b;$$
 $R_{\eta} = AR_{\xi}A^*.$

- 3) Пусть $\{\xi_n\}$ последовательность гауссовских случайных векторов. Если $\xi_n \xrightarrow{\text{с.к.}} \xi$, $n \to \infty$, то $\xi \sim \mathcal{N}(m_\xi; R_\xi)$, где $m_\xi = \lim_{n \to \infty} \mathbf{M}\{\xi_n\}$, а $R_\xi = \lim_{n \to \infty} \mathbf{cov}\{\xi_n, \xi_n\}$, причем указанные пределы существуют и конечны.
- 4) Если $\{\xi_n\}$ последовательность гауссовских СВ и $\xi_n \xrightarrow{\text{п.н.}} \xi$, $n \to \infty$, то $\xi_n \xrightarrow{\text{с.к.}} \xi$, $n \to \infty$ (в общем случае это не верно!).
- 5) (Теорема о нормальной корреляции). Пусть $\gamma = \{\xi^*, \eta^*\}^* -$ гауссовский вектор, такой, что $R_{\eta} > O$, тогда
 - а) условное математическое ожидание имеет вид

$$\hat{\xi} = \mathbf{M}\{\xi \mid \eta\} = m_{\xi} + R_{\xi\eta}R_{\eta}^{-1}(\eta - m_{\eta});$$
 (14.10)

б)
$$\xi \perp \xi - \hat{\xi}$$
, $m. e. \xi u \xi - \hat{\xi}$ — независимы;

в) если $\Delta \xi = \xi - \hat{\xi}$, то

$$\mathbf{M}\{\Delta\xi\} = 0, \quad \mathbf{cov}\{\Delta\xi, \Delta\xi\} = R_{\xi} - R_{\xi\eta}R_{\eta}^{-1}R_{\xi\eta}^*;$$

г) условное математическое ожидание $\hat{\xi}$ имеет гауссовское распределение с параметрами $(m_{\xi}; R_{\xi\eta}R_{\eta}^{-1}R_{\xi\eta}^*)$, где

$$R_{\xi} = \mathbf{cov}\{\xi, \xi\}, \quad R_{\xi\eta} = \mathbf{cov}\{\xi, \eta\}, \quad R_{\eta} = \mathbf{cov}\{\eta, \eta\}.$$

Замечание. Теорема о нормальной корреляции дает явный вид (14.10) с.к.-оптимальной оценки $\hat{\xi} = \mathbf{M}\{\xi \mid \eta\}$ для ξ по наблюдениям η в гауссовском случае. Заметим, что $\hat{\xi}$ линейно зависит от η .

6) Если $\{\gamma, \xi, \eta\}$ составляют гауссовский вектор, а ξ и η — некоррелированные, то

$$\mathbf{M}\{\gamma \mid \xi, \eta\} = \mathbf{M}\{\gamma \mid \xi\} + \mathbf{M}\{\gamma \mid \eta\} - m_{\gamma}.$$

7) Если компоненты вектора $\xi = \{\xi_1, \dots, \xi_n\}^*$ — гауссовские и независимые в совокупности, то ξ — гауссовский случайный вектор.

Пусть $\{\xi_k, k \geqslant 1\}$ — последовательность независимых одинаково распределенных случайных величин с $\mathbf{M}\{\xi_k\}=a$ и $\mathbf{D}\{\xi_k\}=\sigma^2>0$. Обозначим $S_n=\xi_1+\ldots+\xi_n$. Очевидно, что $\mathbf{M}\{S_n\}=na$, $\mathbf{D}\{S_n\}=n\sigma^2>0$. Тогда СВ $\zeta_n=(S_n-na)/(\sigma\sqrt{n})$ является центрированной ($\mathbf{M}\{\zeta_n\}=0$) и нормированной ($\mathbf{D}\{\zeta_n\}=1$) суммой случайных величин $\{\xi_k, k\leqslant n\}$.

Теорема 14.15 (Центральная предельная теорема). Последовательность случайных величин $\{\zeta_n, n \geqslant 1\}$ сходится по распределению к стандартной гауссовской случайной величине ζ , т. е.

$$\mathbf{P}\{\zeta_n\leqslant x\}\to \varPhi(x)\quad \textit{при}\quad n\to\infty\quad \textit{равномерно по}\quad x\in\mathbb{R}^1.$$

Замечание. Любая последовательность случайных величин, слабо сходящаяся к некоторой гауссовской СВ, называется асимптотически нормальной. Центральная предельная теорема устанавливает свойство асимптотической нормальности для последовательности
центрированных и нормированных сумм произвольных независимых
одинаково распределенных случайных величин, имеющих конечные
дисперсии.

14.7. Гильбертово пространство случайных величин с конечным вторым моментом. Для вероятностных приложений наиболее важным является пространство $\mathcal H$ случайных величин ξ , определенных на одном и том же вероятностном пространстве $\{\Omega, \mathcal F, \mathbf P\}$, центрированных и имеющих конечный второй момент:

$$\mathbf{M}\{\xi\} = 0 \quad \mathbf{M} \quad \int_{\Omega} |\xi(\omega)|^2 \mathbf{P}(d\omega) = \mathbf{M}\{|\xi|^2\} < \infty.$$

Если $\xi, \eta \in \mathcal{H}$, то положим

$$(\xi, \eta) = \mathbf{M}\{\xi\overline{\eta}\} = \mathbf{cov}\{\xi, \eta\}.$$

Справедливы следующие свойства операции (\cdot, \cdot) :

- 1) $(\xi, \xi) \geqslant 0$; если $(\xi, \xi) = 0$, то $\xi = 0$ (**P**-п.н.);
- 2) $(a\xi + b\eta, \zeta) = a(\xi, \zeta) + b(\eta, \zeta)$ для любых $a, b \in \mathbb{C}$;
- $3) \ (\eta, \xi) = (\xi, \eta),$ где $\xi, \eta, \zeta \in \mathcal{H}.$

Тем самым (\cdot,\cdot) является *скалярным произведением* и определяет *норму* в пространстве \mathcal{H} :

$$\|\xi\| = (\xi, \xi)^{1/2}.$$

Если $\xi_n \to \xi$, $n \to \infty$ в \mathcal{H} , то $\mathbf{M} \big\{ |\xi_n - \xi|^2 \big\} \to 0$. Таким образом, сходимость в \mathcal{H} означает с.к.-сходимость. В силу свойств с.к.-сходимости заключаем, что если $\{\xi_n\}$ фундаментальна, то она сходится к некоторой СВ ξ , причем $\|\xi\|^2 = \mathbf{M} \big\{ |\xi|^2 \big\} < \infty$, т. е. $\xi \in \mathcal{H}$. Последнее означает, что \mathcal{H} — пространство со скалярным произведением, полное относительно сходимости по норме, порожденной этим произведением. Итак, \mathcal{H} — гильбертово пространство случайных величин с конечным вторым моментом.

Если $\xi, \eta \in \mathcal{H}$ и $(\xi, \eta) = 0$, то эти CB называются *ортогональными*, что обозначается как $\xi \perp \eta$. Понятие ортогональности играет важную роль в задачах оценивания случайных величин.

Пусть $\xi, \eta_1, \ldots \eta_n \in \mathcal{H}$. Предположим, мы хотим оценить случайную величину ξ по наблюдениям $\eta = \{\eta_1, \ldots, \eta_n\}^*$. Как следует из теоремы 14.14, такой оценкой является $\mathbf{M}\{\xi \mid \eta_1, \ldots, \eta_n\}$. Однако вычисление условного математического ожидания требует знания совместного закона распределения всех CB $\{\xi, \eta_1, \ldots, \eta_n\}$, что довольно редко выполняется на практике. Если доступная информация ограничена лишь первыми двумя моментами совместного распределения и оно не является гауссовским, то можно определить наилучшую в среднеквадратическом смысле линейную оценку для ξ , т. е. $c.\kappa$.-оптимальную линейную оценку.

Определение 14.29. Случайная величина

$$\widehat{\xi} = \widehat{l}(\eta_1, \dots, \eta_n) = \sum_{k=1}^n a_k \eta_k$$

называется c.к.-оптимальной линейной оценкой для ξ по наблюдениям $\{\eta_1,\ldots,\eta_n\}$, если для любой линейной функции $l(y_1,\ldots,y_n)$ имеет место неравенство

$$\mathbf{M}\{|\xi - \widehat{\xi}|^2\} \leqslant \mathbf{M}\{|\xi - l(\eta_1, \dots, \eta_n)|^2\}.$$

Теорема 14.16. Пусть ξ , $\eta_1, \ldots, \eta_n \in \mathcal{H}$, а $R_{\eta} = \mathbf{cov}\{\eta, \eta\}$ — положительно определенная матрица. Тогда с.к.-оптимальная линейная оценка $\hat{\xi}$ вычисляется по формуле

$$\widehat{\xi} = R_{\xi\eta} R_{\eta}^{-1} \eta, \tag{14.11}$$

где $R_{\xi\eta} = \mathbf{cov}\{\xi,\eta\}$. При этом

$$\|\xi - \hat{\xi}\|^2 = \mathbf{M}\{|\xi - \hat{\xi}|^2\} = D_{\xi} - R_{\xi\eta}R_{\eta}^{-1}R_{\xi\eta}^*.$$
 (14.12)

Замечания. 1) Формулы (14.11), (14.12) идентичны формулам теоремы о нормальной корреляции, что не случайно. Действительно, для любой конечной совокупности случайных величин из \mathcal{H} существует семейство гауссовских случайных величин, имеющих те же моменты первого и второго порядка. Для этих гауссовских величин с.к.-оптимальная оценка для ξ есть условное математическое ожидание, которое по теореме о нормальной корреляции является линейной функцией от наблюдений. Поэтому параметры, определяющие эту линейную функцию, одновременно определяют и наилучшую линейную оценку в \mathcal{H} .

- 2) Заметим, что для с.к.-оптимальной линейной оценки $\hat{\xi}$ также справедливо $\hat{\xi} \perp \xi \hat{\xi}$.
- 3) Если через $\mathcal{H}(\eta)$ обозначить замкнутое линейное подпространство, порожденное случайным вектором η , а через $\pi_{\mathcal{H}(\eta)}(\cdot)$ оператор ортогонального проектирования на $\mathcal{H}(\eta)$ (см. п. 13.8), то очевидно, что с.к.-оптимальная линейная оценка

$$\widehat{\xi} = \pi_{\mathcal{H}(\eta)}(\xi).$$

Оператор $\pi_{\mathcal{H}(\eta)}$ называют также оператором условного математического ожидания в широком смысле и обозначают $\widehat{\mathbf{M}}\{\cdot\mid\eta\}$. Таким образом, $\widehat{\xi}=\widehat{\mathbf{M}}\{\xi\mid\eta\}$ — с.к.-оптимальная линейная оценка.

14.8. Ортогональная стохастическая мера. Пусть задано вероятностное пространство $\{\Omega, \mathcal{F}, \mathbf{P}\}$ и некоторое множество $E \subseteq \mathbb{R}^1$ с алгеброй \mathcal{E}_0 его подмножеств. Пусть также $\mathcal{E} = \sigma\{\mathcal{E}_0\}$ — минимальная σ -алгебра, содержащая \mathcal{E}_0 .

О пределение 14.30. Комплексная функция $Z_0(\Delta) = Z_0(\omega; \Delta)$, где $\omega \in \Omega$, $\Delta \in \mathcal{E}_0$, называется элементарной стохастической мерой, если выполнены следующие условия:

1) $Z_0(\Delta)$ — центрированная случайная величина с конечным вторым моментом, т. е. $\mathbf{M}\{Z_0(\Delta)\}=0$ и $\mathbf{M}\{|Z_0(\Delta)|^2\}<\infty$ для всех $\Delta\in\mathcal{E}_0$;

2) если $\Delta_1 \cap \Delta_2 = \emptyset$, где $\Delta_1, \Delta_2 \in \mathcal{E}_0$, то

$$Z_0(\Delta_1 \cup \Delta_2) = Z_0(\Delta_1) + Z_0(\Delta_2)$$
 (**P**-п.н.);

3) если $\{\Delta_n\}$ — последовательность множеств из \mathcal{E}_0 , таких, что $\Delta_1\supseteq\Delta_2\supseteq\ldots\supseteq\Delta_n\supseteq\ldots$ и $\bigcap_{n=1}^\infty\Delta_n=\varnothing$ (т. е. $\Delta_n\downarrow\varnothing$ при $n\to\infty$), то $\mathbf{M}\{|Z_0(\Delta_n)|^2\}\to 0$ при $n\to\infty$.

Среди всех элементарных стохастических мер особый интерес для наших целей представляет ортогональная стохастическая мера.

Определение 14.31. Элементарная стохастическая мера $Z_0(\Delta)$, $\Delta \in \mathcal{E}_0$, называется *ортогональной*, если для любых непересекающихся множеств $\Delta_1, \Delta_2 \in \mathcal{E}_0$ выполнено $Z_0(\Delta_1) \perp Z_0(\Delta_2)$, т. е. $\mathbf{M}\left\{Z_0(\Delta_1)\overline{Z_0(\Delta_2)}\right\} = 0$.

Стохастическая мера $Z_0(\cdot)$ тесно связана с некоторой неслучайной мерой, которая определена на $\mathcal{E} = \sigma\{\mathcal{E}_0\}$ и вводится следующим образом. Пусть

$$m_0(\Delta) = \mathbf{M}\{|Z_0(\Delta)|^2\}, \quad \Delta \in \mathcal{E}_0.$$

Нетрудно проверить, что $m_0(\Delta)$ — конечная мера на \mathcal{E}_0 . Тогда по теореме Каратеодори (см. п. 13.2) ее можно единственным образом продолжить до меры m, определенной на \mathcal{E} .

Определение 14.32. Конечная мера $m(\Delta)$, $\Delta \in \mathcal{E}$, называется структурной функцией элементарной ортогональной стохастической меры $Z_0(\Delta)$, $\Delta \in \mathcal{E}_0$.

Оказывается, меру $Z_0(\cdot)$ можно единственным (**P**-п.н.) образом продолжить до ортогональной стохастической меры $Z(\cdot)$, определенной на \mathcal{E} .

Теорема 14.17. Пусть $Z_0(\Delta), \ \Delta \in \mathcal{E}_0, \ -$ ортогональная элементарная стохастическая мера. Тогда существует единственная (**P**-n.н.) ортогональная мера $Z(\Delta), \ \Delta \in \mathcal{E}, \$ такая, что для любого $\Delta \in \mathcal{E}_0$ выполнено $Z_0(\Delta) = Z(\Delta)$ (**P**-n.н.), причем

$$\mathbf{M}\big\{|Z(\Delta)|^2\big\}=m(\Delta),\quad \Delta\in\mathcal{E},$$

 $rde\ m(\cdot)\ -\ cmpyкmypная\ функция\ меры\ Z_0(\cdot).$

Замечания. 1) Мера $Z(\cdot)$ является σ -аддитивной в среднеквадратическом смысле, т. е. если $\Delta_n\in\mathcal{E},\,n=1,2,\ldots,\,\Delta_m\cap\Delta_k=\varnothing$ при

$$m \neq k$$
 и $\Delta = \sum_{n=1}^{\infty} \Delta_n \in \mathcal{E}$, то

$$\mathbf{M}\Big\{ig|Z(\Delta) - \sum_{n=1}^N Z(\Delta_n)ig|^2\Big\} o 0$$
 при $N o \infty.$

2) Меру $m(\Delta)$ также будем называть структурной функцией ортогональной стохастической меры $Z(\cdot)$ на $\mathcal{E},$ так как для любого $\Delta \in \mathcal{E}$ следует

 $m(\Delta) = \mathbf{M}\{|Z(\Delta)|^2\}.$

- **14.9.** Стохастический интеграл по ортогональной мере. Пусть ортогональная стохастическая мера $Z(\cdot)$ и ее структурная функция $m(\cdot)$ заданы на \mathcal{E} . Рассмотрим следующие два гильбертовых пространства:
- 1) пространство L_2 комплексных неслучайных функций $f(\lambda)$, $\lambda \in E$, с интегрируемым квадратом по мере m:

$$\int_{E} |f(\lambda)|^2 m(d\lambda) < \infty.$$

Пространство L_2 является гильбертовым со скалярным произведением и соответствующей нормой:

$$\langle f, g \rangle = \int_E f(\lambda) \overline{g(\lambda)} \, m(d\lambda), \qquad \|f\|_{L_2} = \sqrt{\langle f, f \rangle}.$$

2) пространство ${\cal H}$ случайных величин с конечным вторым моментом (см. п. 14.7).

Следующее утверждение будет использовано при построении стохастического интеграла.

T е о р е м а 14.18. Пусть $f \in L_2$, тогда найдется последовательность простых функций $f_n \in L_2$, такая, что

$$||f_n(\lambda) - f(\lambda)||_{L_2} \to 0 \quad npu \quad n \to \infty.$$
 (14.13)

Определим стохастический интеграл на множестве простых функций, а потом распространим это понятие на все функции из L_2 , пользуясь утверждением теоремы 14.18.

Определение 14.33. Пусть $f(\lambda)$, $\lambda \in E$ — простая функция, т. е.

$$f(\lambda) = \sum_{k=1}^{n} f_k I_{\Delta_k}(\lambda), \tag{14.14}$$

где $f_k \in \mathbb{C}, \ \Delta_k \in \mathcal{E}$ и $\Delta_k \cap \Delta_l = \varnothing$ при $k \neq l$. Тогда СВ

$$I(f) = \sum_{k=1}^{n} f_k Z(\Delta_k)$$

называется cmoxacmuческим интегралом от простой функции $f(\lambda)$ по мере $Z(\cdot)$.

20 Б.М. Миллер и А.Р. Панков

Из определения следует, что $I(f) \in \mathcal{H}$, причем

$$\mathbf{M}\{|I(f)|^2\} = \sum_{k=1}^n |f_k|^2 m(\Delta_k) = \int_E |f(\lambda)|^2 m(d\lambda) < \infty.$$

Тем самым пространства \mathcal{H} и L_2 связаны следующим важным соотношением:

$$||I(f)|| = ||f||_{L_2}$$

для любой простой $f \in L_2$.

Пусть последовательность функций $\{f_n\}$ аппроксимирует $f \in L_2$ в смысле (14.13). Тогда

$$\|I(f_n) - I(f_m)\| = \|f_n - f_m\|_{L_2} \to 0$$
 при $n \to \infty$

в силу фундаментальности $\{f_n\}$. Таким образом, последовательность $\{I(f)\}$ фундаментальна в \mathcal{H} и, следовательно, сходится в \mathcal{H} (т. е. в с.к.-смысле) к некоторому пределу, который мы обозначим $I(f) \in \mathcal{H}$.

Определение 14.34. Случайная величина $I(f) \in \mathcal{H}$ называется стохастическим интегралом на E от функции $f\in L_2$ по ортогональной стохастической мере $Z(\cdot)$ и обозначается

$$I(f) = \int_{E} f(\lambda) Z(d\lambda).$$

Непосредственно из определения I(f) и свойств ортогональной стохастической меры следуют основные свойства стохастического ин-

Tеорема 14.19. Пусть $f, g u f_n \in L_2$. Тогда справедливо

- $\begin{array}{l} 1) \ \mathbf{M}\{I(f)\} = 0; \\ 2) \ (I(f), I(g)) = \langle f, g \rangle; \\ 3) \ I(af+bg) = aI(f) + bI(g) \ (\mathbf{P}\text{-}n.n.), \ \textit{ede} \ a, b \in \mathbb{C}; \end{array}$
- 4) $\mathbf{D}\{I(f)\} = ||f||_{L_2}^2 = \int_{\mathbb{R}} |f(\lambda)|^2 m(d\lambda);$

5)
$$\mathbf{cov}\{I(f), I(g)\} = \langle f, g \rangle = \int_{E} f(\lambda) \overline{g(\lambda)} \, m(d\lambda);$$

6) ecau
$$f_n \to f$$
, $n \to \infty$ e L_2 , mo $I(f_n) \xrightarrow{\text{c.k.}} I(f)$, $n \to \infty$.

Свойства 1-6 широко используются в пп. 3.3, 4.2, 4.3, 9.3 при построении спектральных разложений стационарных процессов и изучении линейных преобразований последних. Кроме того, применением таких интегралов можно ограничиться при изучении линейных стохастических дифференциальных уравнений (см. пп. 8.4, 11.3).

§ 15. Вычисление специальных интегралов

15.1. Интеграл вероятностей. Для вероятностного анализа гауссовского случайного процесса весьма часто приходится вычислять интеграл вероятностей (функцию Лапласа)

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt, \quad x \in \mathbb{R}^1.$$
 (15.1)

Обычно процедуру вычисления $\Phi(x)$ сводят к определению значения функции $\Phi_0(x)$, которая отличается от $\Phi(x)$ только нижним пределом:

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-t^2/2} dt, \quad x \geqslant 0.$$
 (15.2)

Из (15.1), (15.2) следует:

$$\Phi(x) = \begin{cases}
1/2 + \Phi_0(x), & \text{если } x \geqslant 0, \\
1/2 - \Phi_0(-x), & \text{если } x < 0.
\end{cases}$$
(15.3)

Для приближенного вычисления $\Phi_0(x)$ можно воспользоваться следующим соотношением:

$$\Phi_0(x) = \frac{x}{\sqrt{2\pi}} \left[1 - \frac{x^2}{2 \cdot 1! \cdot 3} + \frac{x^4}{2^2 \cdot 2! \cdot 5} - \frac{x^6}{2^3 \cdot 3! \cdot 7} + \dots \right], \tag{15.4}$$

причем (15.4) применяется при $x\leqslant 3$, а для x>3 можно использовать асимптотический ряд:

$$\Phi_0(x) = \frac{1}{2} - \frac{e^{-x^2/2}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{1 \cdot 3}{x^4} - \frac{1 \cdot 3 \cdot 5}{x^6} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{x^8} - \dots \right]. \quad (15.5)$$

Соотношения (15.3)–(15.5) позволяют вычислять значение функции $\Phi(x)$ с любой точностью, варьируя число членов в разложениях (15.4), (15.5).

15.2. Интегралы от дробно-рациональных функций. Вычисление дисперсии стационарной случайной последовательности с дробно-рациональной спектральной плотностью сводится к вычислению интеграла от дробно-рациональной функции

$$I_p = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|F(e^{-i\lambda})|^2}{|H(e^{-i\lambda})|^2} d\lambda,$$
 (15.6)

где F(x) и H(x) — многочлены следующего вида:

$$\begin{cases}
F(x) = a_0 + a_1 x + \dots + a_p x^p, \\
H(x) = b_0 + b_1 x + \dots + b_p x^p, \quad p \geqslant 1,
\end{cases} (15.7)$$

причем многочлен H(x) — устойчивый, т. е. все его корни лежат вне круга единичного радиуса с центром в начале координат. В этом случае интеграл (15.6) при любом $p\geqslant 1$ может быть вычислен аналитически с использованием алгоритма

$$I_p = \frac{1}{\beta_0^p} \sum_{k=0}^p \frac{(\alpha_k^k)^2}{\beta_0^k},\tag{15.8}$$

где коэффициенты $\{\alpha_k^k\}, \{\beta_0^k\}$ вычисляются по рекуррентным формулам (для $k=p,p-1,\ldots,0$):

$$\begin{cases}
\beta_i^{k-1} = \beta_i^k - \gamma_i^k \beta_k^k, \\
\alpha_i^{k-1} = \alpha_i^k - \gamma_i^k \alpha_k^k, & i = 0, 1, \dots, k-1,
\end{cases}$$
(15.9)

где обозначено $\gamma_i^k = \beta_{k-i}^k/\beta_0^k$.

Соотношения (15.9) реализуются со следующими начальными значениями:

$$\alpha_i^p = a_i; \quad \beta_i^p = b_i, \quad i = 0, 1, \dots, p,$$
 (15.10)

где $\{a_i\}$, $\{b_i\}$ — коэффициенты многочленов F(x) и H(x) соответственно.

Для вычисления дисперсии стационарной случайной функции с дробно-рациональной спектральной плотностью приходится вычислять интеграл

$$I_n = \int_{-\infty}^{\infty} \frac{g_n(i\lambda)}{h_n(i\lambda)h_n(-i\lambda)} d\lambda, \qquad (15.11)$$

где $g_n(x)$ и $h_n(x)$ — многочлены следующего вида:

$$\begin{cases}
g_n(x) = b_0 x^{2n-2} + b_1 x^{2n-4} + \dots + b_{n-1}, \\
h_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n,
\end{cases}$$
(15.12)

причем многочлен $h_n(x)$ таков, что все его корни имеют отрицательные действительные части (т. е. лежат в левой полуплоскости) и $a_0 \neq 0$. В этом случае для любого $n \geqslant 1$ интеграл (15.11) вычисляется аналитически следующим образом:

$$I_n = \pi (-1)^{n+1} \frac{N_n}{a_0 D_n},\tag{15.13}$$

где

$$D_{n} = \det \begin{bmatrix} d_{1,1} & d_{1,2} & \cdots & d_{1,n} \\ d_{2,1} & d_{2,2} & \cdots & d_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n,1} & d_{n,2} & \cdots & d_{n,n} \end{bmatrix},$$
(15.14)

 $d_{m,r} = a_{2m-r}$, причем считается, что $a_k = 0$, если k < 0 или k > n;

$$N_{n} = \det \begin{bmatrix} b_{0} & d_{1,2} & \cdots & d_{1,n} \\ b_{1} & d_{2,2} & \cdots & d_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n-1} & d_{n,2} & \cdots & d_{n,n} \end{bmatrix} .$$
 (15.15)

В частности, для случаев n=1 и n=2 из (15.13)–(15.15) следуют аналитические формулы

$$I_1 = \pi \frac{b_0}{a_0 a_1}, \qquad I_2 = \pi \frac{a_0 b_1 - a_2 b_0}{a_0 a_1 a_2}.$$

Заметим, что в силу ограничений, наложенных на многочлен $h_n(x)$, определитель $D_n \neq 0$, поэтому интеграл (15.11) сходится.

СПИСОК ЛИТЕРАТУРЫ

- 1. Боровков А.А. Теория вероятностей. М.: Эдиториал УРСС, 1999.
- 2. Вентиель А.Д. Курс теории случайных процессов. М.: Наука, 1996.
- 3. Вентиель Е.С., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. М.: Высшая школа, 2001.
- 4. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. М.: Наука, 1977.
- 5. Γ неденко E.B., Kоваленко H.H. Введение в теорию массового обслуживания. M.: Наука, 1987.
- 6. Дэвис М.Х.А. Линейное оценивание и стохастическое управление. М.: Наука, 1984.
- 7. *Климов Г.П., Кузъмин А.Д.* Вероятность, процессы, статистика. Задачи с решениями. М.: Изд-во МГУ, 1985.
- 8. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976.
- 9. Королюк В.С. и др. Справочник по теории вероятностей и математической статистике. М.: Наука, 1985.
- 10. *Крамер Г.*, Лидбеттер M. Стационарные случайные процессы. М.: Мир, 1969.
- 11. Лебедев А.А. и др. Статистическая динамика и оптимизация управления летательных аппаратов. М.: Машиностроение, 1985.
- 12. *Льюнг Л.* Идентификация систем. Теория для пользователей. М.: Наука, 1991.
- 13. Люстерник Л.А., Соболев В.И. Краткий курс функционального анализа. М.: Высшая школа, 1982.
- 14. *Мельников А.В.* Финансовые рынки: стохастический анализ и расчет производных ценных бумаг. М.: Изд-во ТВП, 1997.
- 15. *Острем К.* Введение в стохастическую теорию управления. М.: Мир, 1973.
- 16. *Пакшин П.В.* Дискретные системы со случайными параметрами и структурой. М.: Наука, 1994.
- 17. Панков А.Р. Рекуррентная условно-минимаксная фильтрация процессов в разностных нелинейных стохастических системах // Известия РАН. Техническая кибернетика. 1992. № 3. С. 71–77.
- 18. *Пугачев В.С.* Лекции по функциональному анализу. М.: Изд-во МАИ, 1996.
- 19. *Пугачев В.С.* Теория вероятностей и математическая статистика. М.: Наука, 1979.
- 20. Пугачев В.С., Синицын И.Н. Стохастические дифференциальные системы. М.: Наука, 1990.
- 21. *Розапов Ю.А.* Введение в теорию случайных процессов. М.: Наука, 1982.

- 22. $Posanos\ W.A.$ Теория вероятностей, случайные процессы и математическая статистика. М.: Наука, 1985.
- 23. Семенов В.В., Пантелеев А.В., Бортаковский А.С. Математическая теория управления в примерах и задачах. М.: Изд-во МАИ, 1997.
- 24. $Cocynun\ HO.\Gamma$. Теория обнаружения и оценивания стохастических сигналов. М.: Советское радио, 1978.
 - 25. *Ширяев А.Н.* Вероятность. М.: Наука, 1989.
- 26. Ширяев А.Н. Основы стохастической финансовой математики. М.: Фазис, 1998.
- 27. $Hiller\ F.S.$, $Lieberman\ G.J.$ Introduction to Stochastic Models in Operations Research. N.Y.: McGraw-Hill, 1990.
 - 28. Merton R. Continuous-Time Finance. Cambridge: Blackwell, 1990.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Аддитивность 266 Закон больших чисел 69 — счетная 265 – — усиленный 141 Алгебра 264 — распределения 287 Алгоритм рекуррентной фильтрации Калмана 111 Импульсный отклик 178 - с.к.-оптимальной нелинейной филь-Интеграл Лебега 273 трации 117 — Стилтьеса 277 — субоптимальной нелинейной филь-— в среднем квадратическом 157 трации первого порядка 123 — вероятностей 15, 299 условно-оптимальной нелинейной — по ортогональной стохастической фильтрации 126 мере 306 Асимптотическая нормальность 230, — стохастический Ито 214 301 — Стратоновича 217 Интенсивность гибели 258 Базис гильбертова пространства 283 однородного процесса с ортого-— линейного пространства 280 нальными приращениями 193 Белый шум гауссовский 16 — перехода 251 — дискретный 16, 57, 98 — потока событий 247 — — многомерный 106 рождения 258 -- с непрерывным временем 27, 156 Квадратическая характеристика — стандартный 57, 106 136, 202 — стационарный 57, 106, 171 Классификация состояний марков-— — широкополосный 171 ской цепи 88 Броуновский мост 49 Ковариация 293 Компенсатор субмартингала 136, Вектор сноса (дрейфа) 46, 236 Вероятности предельные 254 Коэффициенты Фурье 283 — финальные 93 Критерий Коши с.к.-сходимости 295 Вероятностные гипотезы 286 — регулярности стационарной по-Вероятность 284 следовательности 76 перехода 40, 250 с.к.-дифференцируемости 153 — — за один шаг 83 с.к.-интегрируемости 157 — состояния 84, 250 — с.к.-непрерывности 148 — условная 285 сходимости в гильбертовом про-Винеровский процесс 33, 205 странстве 281 Время возвращения в состояние 90 эргодичности марковской случайной функции 255 Дельта-функция Дирака 279

Дисперсия 292

– случайного процесса 22

ного уравнения 219

Единственность (Р-п.н.) решения

стохастического дифференциаль-

Лемма Кронекера 142 — Лоэва 296 Линейная комбинация 279 — независимость 280

— — цепи Маркова 90, 91

— оболочка 280	— — обобщенный 115
— регрессия 111	— статистического моделирования
— система 175	127
Линейное преобразование 60, 65, 175	— формирующих фильтров 231
— — стационарное 60, 70, 176	Множество борелевское 267, 269
— физически реализуемое (фильтр)	— состояний 83 Ма
71, 181	Модель наблюдения Калмана 112 — — стационарная 115
Марковская случайная функция с дискретным множеством зна-	Модификация (версия) случайного процесса 19
чений 250	— — — непрерывная 152
— — — — — однородная 251	Момент марковский 138
— — — — — эргодическая 254	— — остановки 138
Марковское свойство 40, 83	
— —, альтернативная формулировка 86	Независимые случайные величины 289
Мартингал 131, 197	— события 285
 квадратично-интегрируемый 136, 	$-\sigma$ -алгебры 289
201	Неравенство Гельдера 274
Математическое ожидание (среднее)	— Иенсена 274, 297
290	— Коши-Буняковского 275, 280, 293
— — векторного случайного процес-	— Маркова 292
ca 25	— Минковского 274
— — случайного вектора 292	— Чебышева 274, 293
— — процесса 22	Норма 280
панавное 906	р пространство 4/ 59 75 309
— — условное 296	— в пространстве $\mathcal{H} \ 52, 75, 302$
— — в широком смысле 303	
— — в широком смысле 303 — — относительно случайного со-	Опорная траектория 122
— — в широком смысле 303 — — относительно случайного события 298	Опорная траектория 122 Ортогональная проекция 284
— — в широком смысле 303 — — относительно случайного со- бытия 298 — — — случайной величины 297	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283
— — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282
— — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39
— — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадра-
— — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143
— — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302
— — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68
— — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302
$$ в широком смысле 303 $$ относительно случайного события 298 $$ случайной величины 297 Матрица диффузии 46, 236 $$ интенсивностей белого шума 165 $$ ковариационная 293 $$ условная 117 $$ переходная 83 $$ стохастическая 85 Мера 265 $$ Дирака 278 $$ Лебега (на \mathbb{R}^1) 267	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244
 — — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на R¹) 267 — на Rⁿ 269 	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298
$$ в широком смысле 303 $$ относительно случайного события 298 $$ случайной величины 297 Матрица диффузии 46, 236 $$ интенсивностей белого шума 165 $$ ковариационная 293 $$ условная 117 $$ переходная 83 $$ стохастическая 85 Мера 265 $$ Дирака 278 $$ Лебега (на \mathbb{R}^1) 267	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142
$-$ — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на \mathbb{R}^1) 267 — на \mathbb{R}^n 269 — абсолютно непрерывная 275 — вероятностная 284	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117
$$ в широком смысле 303 $$ относительно случайного события 298 $$ случайной величины 297 Матрица диффузии 46, 236 $$ интенсивностей белого шума 165 $$ ковариационная 293 $$ условная 117 $$ переходная 83 $$ стохастическая 85 Мера 265 $$ Дирака 278 $$ Лебега (на \mathbb{R}^1) 267 $$ на \mathbb{R}^n 269 $$ абсолютно непрерывная 275 $$ вероятностная 284 $$ конечная 265	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117
$-$ — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на \mathbb{R}^1) 267 — на \mathbb{R}^n 269 — абсолютно непрерывная 275 — вероятностная 284 — конечная 265 — нормированная 284	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117 Плотность переходная 41 — распределения вероятностей 288
$-$ — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на \mathbb{R}^1) 267 — на \mathbb{R}^n 269 — абсолютно непрерывная 275 — вероятностная 284 — конечная 265 — нормированная 284 — ортогональная стохастическая 304	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117 Плотность переходная 41 — распределения вероятностей 288 — условная 298
$-$ — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на \mathbb{R}^1) 267 — на \mathbb{R}^n 269 — абсолютно непрерывная 275 — вероятностная 284 — конечная 265 — нормированная 284 — ортогональная стохастическая 304 — пуассоновская 195	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117 Плотность переходная 41 — распределения вероятностей 288 — условная 298 — ненормированная 118
$-$ — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на \mathbb{R}^1) 267 — на \mathbb{R}^n 269 — абсолютно непрерывная 275 — вероятностная 284 — конечная 265 — нормированная 284 — ортогональная стохастическая 304 — пуассоновская 195 — элементарная стохастическая 303	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117 Плотность переходная 41 — распределения вероятностей 288 — условная 298 — ненормированная 118 Подпространство всюду плотное 281
$-$ — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на \mathbb{R}^1) 267 — на \mathbb{R}^n 269 — абсолютно непрерывная 275 — вероятностная 284 — конечная 265 — нормированная 284 — ортогональная стохастическая 304 — пуассоновская 195 — элементарная стохастическая 303 Метод Эйлера 224	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117 Плотность переходная 41 — распределения вероятностей 288 — условная 298 — — ненормированная 118 Подпространство всюду плотное 281 — замкнутое 281
$-$ — в широком смысле 303 — — относительно случайного события 298 — — — случайной величины 297 Матрица диффузии 46, 236 — интенсивностей белого шума 165 — ковариационная 293 — условная 117 — переходная 83 — стохастическая 85 Мера 265 — Дирака 278 — Лебега (на \mathbb{R}^1) 267 — на \mathbb{R}^n 269 — абсолютно непрерывная 275 — вероятностная 284 — конечная 265 — нормированная 284 — ортогональная стохастическая 304 — пуассоновская 195 — элементарная стохастическая 303	Опорная траектория 122 Ортогональная проекция 284 Ортогональное дополнение 283 Ортогональные элементы 282 Отсутствие последействия 39 Оценка метода наименьших квадратов 143 — наилучшая линейная 115, 284, 302 — несмещенная 68 — прогноза с.коптимальная 244 — с.коптимальная 110, 298 — сильно состоятельная 142 — состоятельная 68 — фильтрации с.коптимальная 117 Плотность переходная 41 — распределения вероятностей 288 — условная 298 — ненормированная 118 Подпространство всюду плотное 281

Пополнение пространства 281 Разложение Вольда 76 Последовательность весовая 65, 70 – Дуба для субмартингала 136 предсказуемая 131 Размерность линейного пространстохастическая 131 ства 280 — фундаментальная 281 Распределение Бернулли 289 — — по вероятности 295 Пуассона 289 — — почти наверное 295 — абсолютно непрерывное 278 — биномиальное 289 Поток событий 247 — — без последействия 248 — вероятностей состояний 84, 251 — гауссовское (нормальное) 290 — — однородный (стационарный) 247 — п-мерное 300 — ординарный 247 дискретное 287 — простейший 248 — непрерывное 288 — пуассоновский 174, 248 — равномерное 290 Поток σ -алгебр 131, 196, 212 — стационарное 91, 254 Почти всюду 266 — экспоненциальное (показатель-Почти наверное (с вероятностью 1) ное) 290 Ряд Фурье 283 286 Прогноз абсолютно точный 75 – наилучший линейный 75 С.к.-интеграл 157 — с.к.-оптимальный 244 С.к.-предел 147, 295 — тривиальный 76 С.к.-производная 153 Прогнозирование 244 С.к.-сходимость 295 Продолжение меры 266 Семейство конечномерных распре-Производная Радона-Никодима 275 делений случайного процесса 13 — в среднем квадратическом 153 Сечение случайного процесса 11 — обобщенная 156 Симметричное блуждание 207 Прообраз 270 Система элементов ортогональная Пространство вероятностное 284 282 – гильбертово 281 — ортонормальная 282 — измеримое 264 Скалярное произведение 280 — — дискретное 266 — — в пространстве \mathcal{H} 52, 75, 302 – линейное 279 Случайная величина 286 — вещественное (действительное) — (абсолютно) непрерывная 288 279— — гауссовская (нормальная) 299 — — комплексное 279 — — стандартная 299 — — дискретная 287 -, порожденное случайной последовательностью 75 — — центрированная 291 — с мерой 266 Случайная замена времени 138 — случайных величин с конечным Случайная последовательность 12 вторым моментом 52, 302 — авторегрессии-скользящего — элементарных событий 284 среднего порядка (p,q) 99 Процесс Орнштейна-Уленбека 242 — авторегрессионная порядка p 98 - броуновского движения 33 — — гильбертова 65 — рождения и гибели 257 — детерминированная 76 Пуассоновский процесс 194 — подчиненная 76 — неоднородный 194 — — почти периодическая 55 — — обобщенный 202 — скользящего среднего порядка q 99 Равенство Парсеваля 283 — стационарная 53

```
— — двустороннего
                                  — — непрерывным временем 12
                     скользящего
  среднего 57
                                   — — ортогональными приращени-
   – — линейная 57
                                    ями 188
 - — одностороннего скользящего
                                   — — — — однородный 193
  среднего 57
                                   — — стационарный в узком смысле
   - — регулярная 75
                                    38
— — сингулярная 75
                                         — широком смысле 38
— — скользящего среднего поряд-
                                  — считающий 194
                                   — — центрированный 22
  ка p 57
Случайная функция 12, 147
                                   Смешанный момент порядка k слу-
  — дифференцируемая
                        (потраек-
                                     чайного процесса 26
  торно) 154
                                   Событие достоверное 285
                   (потраекторно)
                                   — невозможное 285
— — непрерывная
  148
                                   — противоположное 285
   – — почти наверное 148
                                   События независимые 285
— неупреждающая 212
                                   — несовместные 285
                                   Состояние апериодическое 88
— простая 212
— регулярная 12
                                   — возвратное 88
— — с.к.-дифференцируемая 153
                                   — невозвратное 88
                                   — несущественное 88
— — с.к.-интегрируемая 157
— — с.к.-непрерывная 147
                                   — нулевое 88
— — согласованная 197
                                   периодическое 88
                                   — существенное 88

— стационарная 167

Случайные величины независимые
                                  Состояния сообщающиеся 88
  289
                                   Спектральная плотность 54, 168
— — некоррелированные 293
                                     — дробно-рациональная 231
                                   функция 54, 168
— — ортогональные 293, 302
— — эквивалентные 286
                                   Спектральное разложение ковариа-
Случайные процессы неотличимые
                                    ционной функции 54, 169
  20

— стационарной последовательно-

— — эквивалентные 19, 152
                                    сти 59
                                   — — функции 170
— — в широком смысле 18
Случайный вектор 288
                                   Среднеквадратическая погрешность
  – гауссовский (нормальный) 300
                                     68, 75
                                   Стохастический граф 85, 256
Случайный процесс 11

— вещественный

                    (действитель-

    дифференциал 217

                                   Субмартингал 131, 197
  ный) 12
                                   Супермартингал 131, 197
 - — выходящий из нуля 188
— гауссовский 25, 29
                                   Сходимость в среднем квадратиче-
— гильбертов 23
                                     ском 295
                                   — — порядка p = 295
— — диффузионного типа 46, 237
                                   — относительно нормы 280

— комплексный 12

                                   — по вероятности 294
— — марковский 39
— — однородный 40
                                    - — мере 272

— обновляющий 76, 241

                                   — — распределению (слабая) 296
                                   — почти всюду 272

    – с дискретным временем 12

— — конечными моментами вто-
                                   — почти наверное
                                                       (c
                                                          вероятно-
                                     стью 1) 294
  рого порядка 23
   – — независимыми  приращения-
  ми 190
                                   Телеграфный сигнал 175
```

Теорема Бохнера-Хинчина 168 — — разностное 106 Герглотца 54 — — стационарное, асимптотиче-— Калмана 112 ски устойчивое 106 — Калмана-Бьюси 240 — характеристическое 98 — Каратеодори 266 Уравнения Колмогорова алгебраи- Колмогорова о существовании ческие 255 непрерывной модификации 152 — дифференциальные 252 — стационарные метода моментов — — случайного процесса 18 — Ле́ви 276 107, 228 — фильтра Калмана 115 — Лебега 276 — Радона-Никодима 275 — — Калмана–Бьюси 243 — Фату 277 Условие Липшица 219 Условия согласованности семейства — о σ-аддитивности интеграла Лебеконечномерных распределений 17 га 275 — виде наилучшей линейной Устойчивость (асимптотическая) 99, оценки 303 228 — многочлена 233 — с.к.-оптимальной оценки 110, 298 — нестационарной системы 230 — — — в гауссовском случае 110 — стохастическая 224 — замене переменной в интеграле Лебега 276 Факторизация спектральной плот-— — нормальной корреляции 111, 300 ности 105 — — связи различных видов вероят-Фильтр Калмана (дискретный) 112 ностной сходимости 296 — линеаризованный 123 — существовании интеграла Ито — — расширенный 124 214— Калмана–Бьюси 241 – решения стохастического диф-— формирующий 105, 233 ференциального уравнения 218 — экспоненциального сглаживания - сходимости мартингала 141 об абсолютной непрерывности ин-Формула дифференцирования с.к.-интеграла Лебега 275 теграла по верхнему пределу 159 Тождества Вальда 140 — интегрирования по частям для Траектория (реализация) случайнос.к.-интеграла 159 го процесса 12 — — — — стохастического интеграла 192 Управляемость (полная) 239 - полного математического ожида-Уравнение Колмогорова-Фоккерания 298 Планка 47, 237 — полной вероятности 286 — Колмогорова-Чепмена 40, 251 — преобразования спектральной дифференциальное со случайной плотности при линейном преобправой частью (линейное) 161 разовании 61, 176 стохастического дифференциро-— — — , с постоянными коэфвания Ито 221 фициентами 179 — диффузии 48 Функции эквивалентные 272 Функция Коши 164 — с дискретным временем 119 стохастическое дифференциальное — Лапласа 15, 299, 307 218 абсолютно непрерывная 278 — — линейное 219 борелевская 270

— весовая 178

— выборочная 12

— — —, порожденное пуассонов-

ским процессом 230

- дискретного распределения 278
- дисперсионная 22, 106
- дробно-рациональная 308
- измеримая 270
- интегрируемая (суммируемая) по мере 273
- ковариационная 22
- — векторного случайного процесca 25
- — взаимная 25
- комплексного случайного процесса 23
- стационарной случайной последовательности 53
- — функции 167
- корреляционная 53
- неотрицательно-определенная 24, 36, 53, 167
- плотности распределения 278
- простая 271
- распределения 267
- — вероятностей 287
- — случайного вектора 288
- структурная 304
- характеристическая 292
- — *k*-мерного распределения случайного процесса 26
- эрмитова 36, 53, 168

Центральная предельная теорема 301

Цепь Маркова (дискретная) 83

- — апериодическая 89
- -- конечная 42, 83
- — неразложимая 89, 92
- — однородная 84
- — эргодическая 91

Частотная характеристика 60, 73, 176

Экстраполяция 244

n-мерная плотность распределения случайного процесса 13

- функция распределения 269
- — случайного процесса 13

 θ -интеграл 216

- $\sigma\text{-аддитивность}\ 265$
- σ -алгебра 264
- борелевская 267, 269
- —, порожденная системой множеств 265
- —, случайной величиной 286
- —, функцией 212
- —, случайным вектором 288
- —, функцией 271
- тривиальная 264