
Chapter 4

Kalman Filter

The problem of stochastic filtering is to estimate the state of a random sequence
Xt at a given time t basing on related data Yt obtained by noisy observations until
time t. P (Xt|Y0, . . . , Yt).

For a linear state and observation model, this problem have been solved by R.
Kalman in discrete time case (1960) and by Kalman and Bucy (1961) in continuous
time case.

The solution is called the Kalman filter. It has many applications in engineering
and economics.

The main advantages of Kalman filter:

1. Recursive form of the filtering equations.

2. Easy extension to vector and non stationary cases.

4.1 Linear State and Observation Model

4.1.1 Scalar Case

First we consider a scalar process {Xt}, which is described by linear difference
equation,

Xt+1 = aXt + Vt+1, E(X0) = m0, V ar(X0) = γ0, (4.1)

process {Xt} is said to be a state process. Another process {Yt} referred to as an
observation process is also described by linear difference equation

Yt+1 = bXt + Wt+1, Y0 = 0. (4.2)

In (4.1), (4.2) the initial condition X0 and noises Wt ∼ WN(0, σ2
W ) and Vt ∼

WN(0, σ2
V ) are uncorrelated, and a, b are known constants.

The pair of equations (4.1), (4.2) constitutes the linear state and observation
model.
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Filtering problem

We assume that process {Xt} is unobservable and we have to find the best linear
predictor of Xt given Y1, . . . , Yt = Yt, P (Xt|Yt).

If the joint distribution of noises and initial condition X0 is Gaussian, then
P (Xt|Yt) = E(Xt|Yt).

Recursive Filtering Equations

Denote the set of observations up to time t as

Yt = (Y1, . . . , Yt),

the best predictor
X̂t = E(Xt|Yt),

and the mean squared estimation error

v2
t = E((Xt − X̂t)

2|Yt).

Using the linear model, and the theorem on the orthogonal projection for the
best predictor (see Theorem 1.7), we get a recursion for (X̂t, v

2
t ).

From linear model we have

E(Xt+1|Yt) = aX̂t, E(Yt+1|Yt) = bX̂t,

and

Xt+1 − E(Xt+1|Yt) = a(Xt − X̂t) + Vt+1,

Yt+1 − E(Yt+1|Yt) = b(Xt − X̂t) + Wt+1.

Then, taking into account that Xt, X̂t,Yt and Vt+1,Wt+1 are uncorrelated (in-
dependent in Gaussian case) we can calculate the conditional covariance matrix:

(
d11 d12

d12 d22

)

where
d11 = cov(Xt+1, Xt+1|Yt) = E{(Xt+1 − E(Xt+1|Yt))

2|Yt)}

E{(a(Xt − X̂t) + Vt+1)
2|Yt} = a2v2

t + σ2
V .
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and in the same way

d12 = cov(Xt+1, Yt+1|Yt) = abv2
t ,

d22 = cov(Yt+1, Yt+1|Yt) = b2v2
t + σ2

W .

Using the best linear prediction theorem (Theorem 1.7 of normal correlation in
Gaussian case) we get the following recurrent equations

X̂t+1 = E(Xt+1|Yt, Yt+1) = E(Xt+1|Yt) + d12
d22

(Yt+1 − E(Yt+1|Yt))

= aX̂t +
abv2

t

b2v2
t + σ2

W

(Yt+1 − bX̂t),

v2
t+1 = cov(Xt+1, Xt+1|Yt, Yt+1) = d11 − d2

12
d22

= a2v2
t + σ2

v − (abv2
t )

2

b2v2
t + σ2

W

(4.3)

known as discrete Kalman filter.
Equations (4.3) must be solved for t = 1, 2, ... with initial conditions

X̂0 = E(X0) = m0, v2
0 = V ar(X0) = γ0.

Remarkable Features of Kalman Filter

1. Recursive form of equations permits to realize them without huge amount
of memory. In order to calculate the next estimate (X̂t+1, v

2
t+1) one have to

know only the previous estimate (X̂t, v
2
t ) and update them when the new

observation Yt+1 comes.

2. Equation for v2
t does not depend on observations, so the second equation in

Kalman filter (called the discrete Riccati equation) can be solved in advance.
Solution of this equation permits to estimate the possible mean squared error
of filtering and therefore to design the experiment.

3. In the Gaussian case equations (4.3) give the best estimate, however, the
same equations give the best linear estimate in non-gaussian case. It means
that Kalman filter is robust with respect to the noise distribution.

4. The same type of filtering equations can be obtained even in non-stationary
case for vector processes.
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Other form of Kalman filter

Notice that first equation (4.3) it is a weighted average of the previous estimate
and current observation:

X̂t+1 =
σ2

W

b2v2
t + σ2

W

X̂t +
abv2

t

b2v2
t + σ2

W

Yt+1.

Steady-state Solution

It can be shown that v2
t converges to v2 < ∞ (steady-state) as t →∞.

Denote v2 = Γ then Γ satisfies the equation

Γ = a2Γ + σ2
V −

(ab)2Γ2

b2Γ + σ2
W

,

which can be reduces to quadratic equation

Γ2 +

[
σ2

W (1− a2)

b2 − σ2
V

]
Γ− σ2

V σ2
W

b2 = 0.

If σ2
V > 0, σ2

W > 0, b2 > 0 (otherwise the filtering problem is singular), this equation
always has two real solutions Γ1 > 0 and Γ2 < 0, and the solution Γ1 = lim

t→∞
v2

t .

Then one can replace the time-varying coefficient in the filter equation by its
steady-state value, which gives

abv2
t

b2v2
t + σ2

W

→ abΓ1

b2Γ1 + σ2
W

:= δ

and the filter itself can be reduced to its steady-state form

X̂t+1 = aX̂t + δ(Yt+1 − bX̂t).

Example 4.1 Random Walk with Noise.
This is a case a = 1 in the state equation

Xt+1 = Xt + Vt+1,

and b = 1 in the observation equation

Yt+1 = Xt + Wt+1.
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Then the equation for steady-state solution has a form

Γ2 − σ2
V Γ− σ2

V σ2
W = 0.

Solving this equation we obtain the positive solution

Γ =
1

2

(
σ2

V +
√

σ2
V + 4σ2

V σ2
W

)
,

and

δ =
v2

v2 + σ2
W

=
σ2

V

σ2
V + σ2

W

.

The best predictor at time t of Xt based on steady-state filter is

X̂t = X̂t−1 + δ(Yt − X̂t−1)

or
X̂t = (1− δ)X̂t−1 + δYt.

But this is the equation for exponential smoothing filter (see [4] p. 27).

4.2 Vector Case

4.2.1 Linear State-space Model

In practice we deal with systems that described by vector parameters, and such
systems are just discussed below.

We use the notation {Wt} ∼ WN(0, {Rt}) for multidimensional white noise
with mean 0 and covariance matrix

E(WsW
T
t ) =

{
Rt, if s = t,
0, otherwise

(4.4)

In the case of two dimensions for white noises we have the following. Let

Wt =

(
W1,t

W2,t

)

where W1,t and W2,t are two white noises, both with mean 0 and with covariance
matrix defined as follows.

EWtW
T
t =

(
EW 2

1,t EW1,tW2,t

EW1,tW2,t EW 2
2,t

)
=

(
σ2

1(t) σ1,2(t)
σ1,2(t) σ2

2(t)

)
= Rt, (4.5)

and EWsW
T
t = 0 (null matrix) as s 6= t.
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Notice, that unlike the case studied before the variances EW 2
1,t and EW 2

2,t as
well as the covariance EW1,tW2,t all are assumed to be dependent of t.

However in the most examples below the white noises are considered to be time
independent nevertheless.

State-Space Representations

We consider to vector processes Xt and Yt. For the vector process Yt we con-
sider two equations defining time-space model. The first equation is called the
observation equation:

Yt+1 = GtXt + Wt+1, t = 0, 1, 2, . . . , Y0 = 0, (4.6)

where {Wt} ∼ WN(0, {Rt}), and Gt is a sequence of matrices. The dimension of
Gt is w × v (w is the dimension of white noise, v is the number of observations).

The second equation is

Xt+1 = FtXt + Vt+1, t = 0, 1, 2, . . . , X0 ∼ N(m0, γ0), (4.7)

where {Ft} is a sequence of v × v matrices, and {Vt} ∼ WN(0, {Qt}), and {Vt}
is assumed to be uncorrelated with {Wt}. That is EWtV

′
s = 0 (null-matrix) for

all s and t. It is assumed additionally that X0 is uncorrelated with all of the noise
terms {Vt} and {Wt}. The second equation (4.7) is called the state equation.

Statement of the Optimal Filtering Problem

The problem of the best in mean square prediction of Xt based on previous obser-
vations Yt = (Y1, ...,Yt), is said to be the optimal filtering problem. Solution of
this problem is given by

X̂t = E(Xt|Yt).

In Gaussian case this estimate is a linear function of (Y1, ...,Yt). In the non-
gaussian cases the same formula gives the best linear mean square prediction.

The formulas for the estimator have a recurrent form and are represented by
Kalman filter.

Kalman Filter (Vector Case)

Assume that X̂t = E(Xt|Yt) and

Γt = cov[(Xt − X̂t)(Xt − X̂t)
T |Yt]
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are calculated and are based on observations up to time t.
Then the estimate of X̂t+1 = E(Xt+1|Yt+1) and its conditional covariance Γt+1

that are based on Yt+1 are the solutions of the following recurrent equations

X̂t+1 = FtX̂t + FtΓtG
T
t [Rt+1 + GtΓtG

T
t ]−1(Yt+1 −GtX̂t),

Γt+1 = FtΓtF
T
t + Qt+1 − FtΓtG

T
t [Rt+1 + GtΓtG

T
t ]−1GtΓtF

T
t .

(4.8)

These equations have to be solved for t = 0, 1, ... with initial conditions

X̂0 = m0, Γ0 = γ0.

In the Gaussian case these equations give the best mean square estimation of
Xt based on Yt. In non-gaussian case the same equations give the best mean square
linear prediction based on Yt.

4.2.2 h-step Prediction

The problem of the best in mean square prediction of Xt+h based on previous
observations Yt = (Y1, ...,Yt), is said to be the optimal h-step prediction problem.
Solution of this problem is given by

X̂t = E(Xt+h|Yt).

In Gaussian case this estimate is a linear function of (Y1, ...,Yt). In the non-
gaussian cases the same formula gives the best linear mean square prediction.

The formulas for the estimator have the same recurrent form as Kalman filter.

Formulas for h-step Prediction

The linear state-observation model gives the simple set of equations, having the
same linear form. Assume that X̂t = E(Xt|Yt) and

Γt = cov[(Xt − X̂t)(Xt − X̂t)
T |Yt]

are calculated and are based on observations up to time t. Then for k = 1, ..., h the
estimate X̂t+k = E(Xt+h|Yt) and

Γt+k = cov[(Xt+k − X̂t+k)(Xt+k − X̂t+k)
T |Yt]

can be calculated with the aid of following deterministic systems of recurrent equa-
tions

X̂t+k = Ft−1+kX̂t−1+k

Γt+k = Ft−1+kΓt−1+kF
T
t−1+k + Qt+1,

(4.9)
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with random initial conditions

X̂t and Γt.

4.2.3 Application of Kalman Filter to the Parameter Esti-
mation

Vector parameter estimation problem arises in image restoration, physical mea-
surements, identification etc.

Problem Statement and Relation with Kalman Filtering

Assume that unknown (unobservable) vector θ is a random vector in Rn with the
parameters

E(θ) = mθ, cov(θ, θ) = Γθ.

Observations are the sequence of values

Yt+1 = aT
t θ + Wt+1,

where at is a sequence of known row-vectors in Rn and Wt ∼ WN(0, σt). The
problem is to find best mean square linear estimation of θ basing on observations
available up to time t.

To reduce this problem to a general case take the state equation as

θt+1 = θt,

then this model has a standard linear state-space representation with

Ft ≡ I identity matrix, Qt ≡ 0 null matrix, Gt = aT
t .

The best mean square estimation

θ̂t = E(θ|Yt)

and its conditional covariance

Γt = cov[(θ, θ)|Yt] = E[(θ − θ̂t)(θ − θ̂t)
T |Yt]

can be calculated from the following system of recurrent equations as a particular
case of general equations (4.8)

θ̂t+1 = θ̂t + Γtat[σ
2
t + aT

t Γtat]
−1(Yt+1 − aT

t θ̂t),

Γt+1 = Γt − Γtat[σ
2
t + aT

t Γtat]
−1aT

t Γt.

(4.10)

These equations have to be solved for t = 0, 1, ... with initial conditions

θ̂0 = m0, Γ0 = γ0.
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Explicit Solution for Parameter Estimation

Equations (4.10) admit the explicit solution which helps to investigate either the
parameter estimation procedure is consistent or not. Solution to the equations
(4.10) has a form

θ̂t+1 =

[
I + γ0

t∑

k=0

aka
T
k σ−2

]−1 [
m0 + γ0

t∑

k=0

akσ
−2Yk+1

]
,

Γt+1 =

[
I + γ0

t∑

k=0

aka
T
k σ−2

]−1

γ0.

(4.11)

Definition 4.1 The estimation procedure is consistent if

cov(θ|Yt) → 0

as t →∞.

Proposition 4.1 If all diagonal elements of matrix
t∑

k=0

aka
T
k tend to infinity as

t →∞ then the estimation procedure is consistent.

Proof: In this case the all diagonal elements of Γt tend to zero as t → ∞ and
it implies that Γt → 0.

2

Example 4.2 Parameter Estimation (Scalar Parameter)
In this case

θ ∈ R1, at ≡ a ∈ R1 and σ2
t = sigma2.

The estimation procedure for the parameter θ gives

θ̂t+1 = θ̂t+1

[
1− a2Γt

σ2 + a2Γt

]
+

aΓt

σ2 + a2Γt

Yt+1,

Γt+1 = σ2Γt

σ2 + a2Γt
.

(4.12)

From equations (4.11) we obtain the explicit solution

θ̂t+1 =

m0σ
2 + γ0a

t+1∑

k=1

Yk

σ2 + γ0a
2(t + 1)

,

Γt+1 =
γ0σ

2

σ2 + γ0a
2(t + 1)

.

(4.13)

Therefore, Γt → 0 as t →∞.
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Example 4.3 In Gaussian case how many observation we need to achieve the
given level of accuracy ε with confident level 95%?

Solution: The conditional distribution of θ − θ̂t ∼ N(0, Γt). If we need

P{|θ − θ̂t| ≤ ε} ≥ 0.95,

then it means that
1.96(Γt)

1/2 ≤ ε,

and therefore we have to choose t, from condition

γ0σ
2

σ2 + γ0a
2t
≤ ε2

(1.96)2 ≈
ε2

4
.

2
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