Управление медикобиологическими системами

д.б.н., к.т.н. Михальский А.И. осень 2016 г.

Цель курса

 Целью курса является изучение особенностей управления в живых организмах и популяциях, знакомство с теоретическими основами и методами математического моделирования процессов на уровне организма и популяций.

Познакомимся

- с основами устройства организма, популяции и биоценоза как объектов управления;
- с базовыми знаниями в области управления в живых системах;
- с методами математического моделирования процессов, протекающих на популяционном уровне, и моделирования влияния факторов риска на популяцию;
- с методами математического моделирования процесса лечения, моделирования эпидемического процесса и оценки эффективности управления ими;
- с современными программными системами для математического моделирования и статистического анализа медико-биологической информации.

ЗНАНИЯ, УМЕНИЯ, НАВЫКИ

- осваивать новые предметные области, теоретические подходы и экспериментальные методики;
- эффективно использовать информационные технологии и компьютерную технику для достижения необходимых теоретических и прикладных результатов;

ЗНАНИЯ, УМЕНИЯ, НАВЫКИ

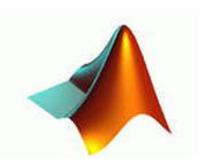
- навыки постановки и моделирования медико-биологических задач;
- навыки обработки результатов опыта и сопоставления с теоретическими данными;
- навыки теоретического анализа реальной медико-биологической информации;

ДОПОЛНИТЕЛЬНО

• Изучим элементы как классических, так и современных методов анализа данных (машинное обучение, восстановление зависимостей по эмпирическим данным)

Литература

- Маврищев В.В. Основы экологии. Минск: Выш. шк., 2007. – 447с.
- Михальский А.И. Методы анализа гетерогенных структур и популяций_М.: Институт проблем управления им.В.А. Трапезникова РАН, 2002. – 64 с.
- Новосельцев В.Н., Михальский А.И., Новосельцева Ж.А. Динамика эпидемий, распространяемых переносчиками, при учете их старения. Демографические исследования. Издательство: МГУ, 2009, 16:40 -52.
- Дартау Л.А., Мизерницкий Ю.Л., Стефанюк А.Р.
 Здоровье человека и качество жизни. Проблемы и особенности управления. Издательство: Синтег, 2009.
- Романюха А.А. Математические модели в иммунологии и эпидемиологии инфекционных заболеваний, М: Бином, 2011. 296 с.


Литература

- Машинцов Е.А., Кузнецов А.А., Лебедев А.М., Новосельцев В.Н. Математические модели и методы оценки экологического состояния территорий — Москва, Физматлит, 2010, 228 с.
- Максвелл Дж. К. Труды по кинетической теории (перевод с англ.). М.: БИНОМ Лаборатория знаний. 2011. 401 с.
- Основы математического моделирования: Учеб. пособие для вузов / Р. Ф. Маликов. М.: Горячая линия-Телеком, 2010. 366 с
- Моделирование систем: Учебник для вузов / С. И. Дворецкий [и др.]. — М.: Академия, 2009. — 316 с.

Литература

- Вапник В.Н., Червоненкис А.Я. Теория распознавания образов. М:Наука (1974):416с.
- Мерков А.Б. Распознавание образов:
 Введение в методы статистического обучения. М: Едиториал УРСС (2011): 256 с.
- **Мерков А.Б.** Распознавание образов: Построение и обучение вероятностных моделей. М: ЛЕНАНД (2014): 240 с.
- **Вьюгин В.В.** Элементы математической теории машинного обучения (учебное пособие). М:. МФТИ (2013): 341 с.

Системы моделирования

высокоуровневый язык технических вычислений

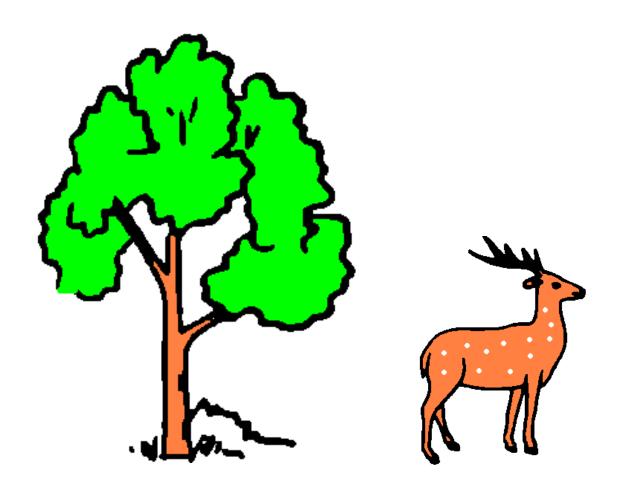
http://matlab.exponenta.ru/

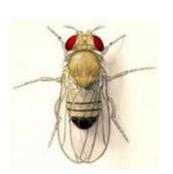
объектно-ориентированная среда статистической обработки

http://herba.msu.ru/shipunov/software/r/r-ru.htm

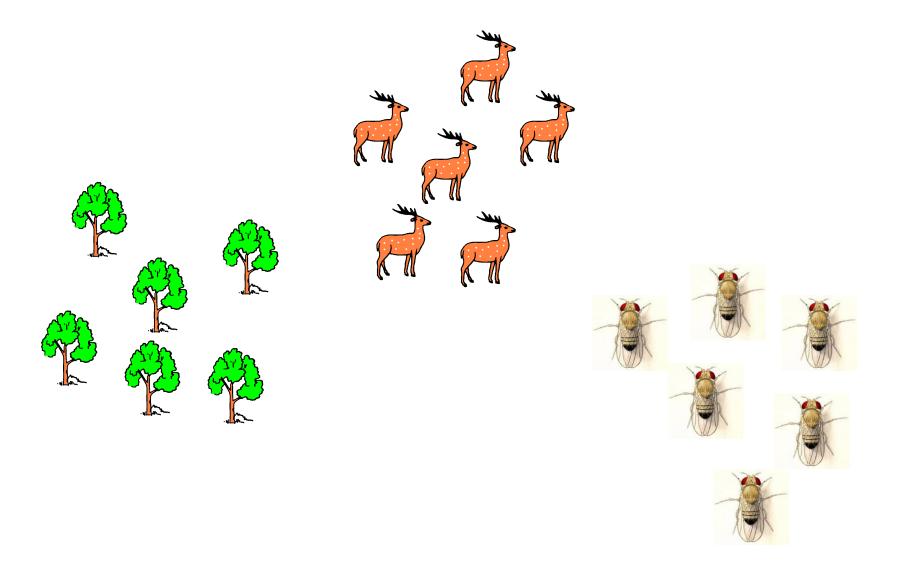
Медико-биологические системы как объект управления

Медико-биологические системы как объект управления

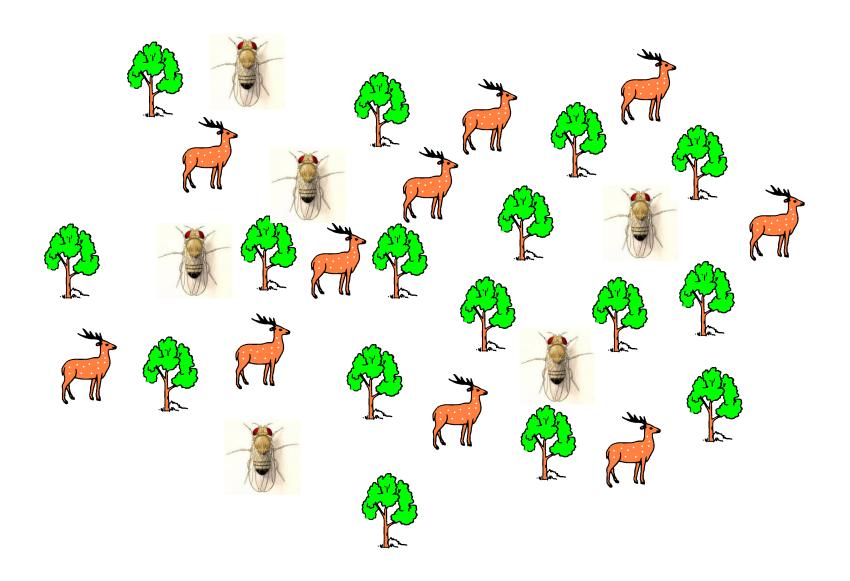

- *Уровни организации:* Организм, популяция, биоценоз. Организм, орган, клетка.
- Общность процессов в различных организмах: реакция на стресс, адаптация, распределение ресурсов.
- *Механизмы управления:* воздействие на орган, на организм, на популяцию.
- Различные целевые функция управления на разных уровнях: клетки, организма, популяции. Эволюционная оптимальность.
- Управление здоровьем населения как аспект социального управления.


Биоценоз

Популяция


Организм

Организм, популяция, биоценоз



Организм, ПОПУЛЯЦИЯ, биоценоз

Организм, популяция, биоценоз

Как мужик поссорился с совой (В.Бианки)

Мужик – любитель попить чаю с молоком, поссорился с совой, которая жила рядом. Разобидевшись, сова улетела.

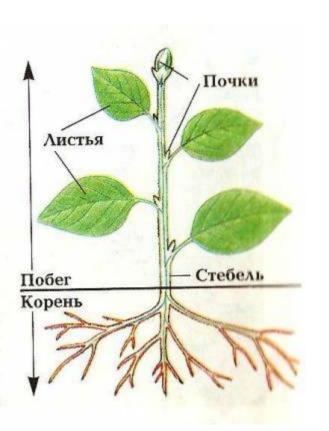
Вскоре у мужика закончилось молоко, и он отправился к корове.

Корова рассказала, что молока нет так как **клевера** на поле нет, так как **шмели** улетели, поскольку улетела **сова**, расплодились **мыши** и разорили шмелиные гнезда.

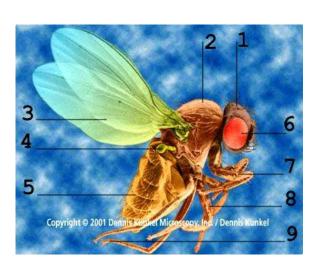
И пошел Мужик просить у совы прощенья.

Сова его простила и вернулась: мышей «призвали» к порядку, шмели вернулись, клевер снова зацвел, корова стала давать молоко. А мужик стал пить чай уже вдвоем с совой.

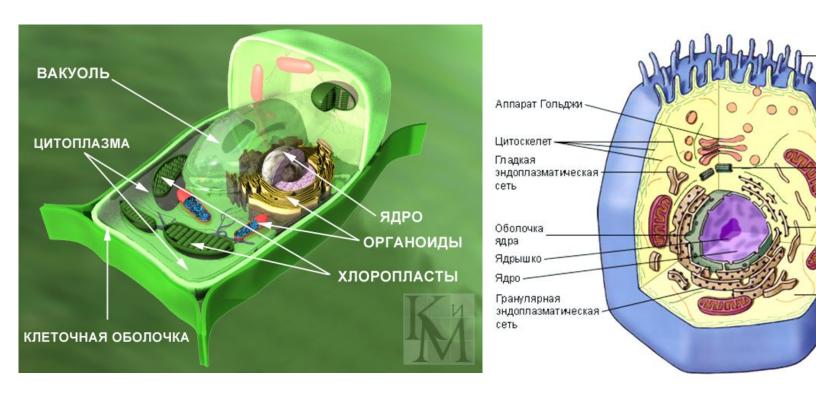
Биоценоз


Популяция

Организм


Орган

Клетка


Организм, орган, клетка

Организм, орган, **эукариотическая (ядерная) клетка**

эукариотическая клетка растений

эукариотическая клетка животных

Микроворсинки

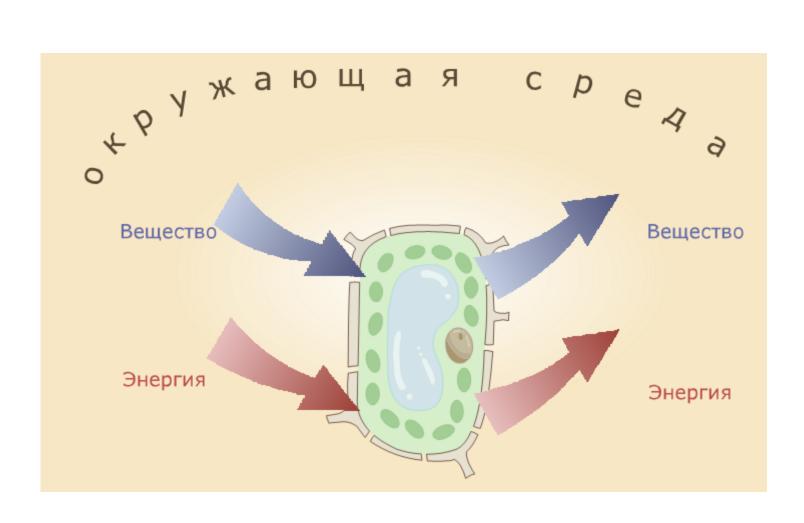
Плазматическая мембрана

Центриоли

Лизосомы

Рибосомы

М ит охондрии


Цитоплазма

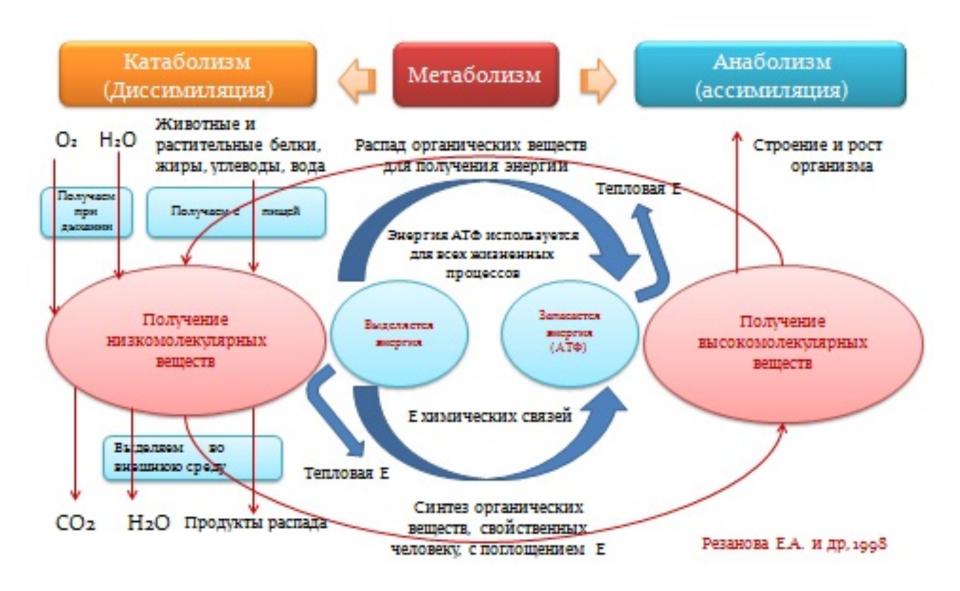
Клетка — элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.

Общность клеточных процессов и общность процессов в различных организмах

- обмен веществ;
- реакция на стресс;
- адаптация.

ОБМЕН ВЕЩЕСТВ

ОБМЕН ВЕЩЕСТВ (син. метаболизм) – совокупность химических и физических превращений, происходящих в живом организме и обеспечивающих его жизнедеятельность во взаимосвязи с внешней средой. Суть О. веществ заключается в поступлении в организм из внешней среды различных веществ, усвоении и использовании их в процессе жизнедеятельности, как источников энергии и материала для построения структур организма, и выделении образующихся продуктов обмена во внешнюю среду.


Состоит из процессов <u>ассимиляции</u> и <u>диссимиляции</u>.

АССИМИЛЯЦИЯ (лат. assimilatio употребление, усвоение) – совокупность процессов создания живой материи. Состоит из:

- 1) приема из внешней среды необходимых для жизни веществ;
- 2) превращения вещества в соединения, приемлемые для тканей и организма;
- 3) синтеза структурных единиц клеток, ферментов и других регуляторных соединений и замены устаревших новыми;
- 4) синтеза более сложных соединений из более простых;
- 5) отложения запасов

КАТАБОЛИЗМ (от греч. katabole - сбрасывание - разрушение) (диссимиляция), совокупность протекающих в живом организме ферментативных реакций расщепления сложных органических веществ (в т. ч. пищевых). В процессе катаболизма происходит освобождение энергии, заключенной в химических связях крупных органических молекул, и запасание ее в форме богатых энергией фосфатных связей аденозинтрифосфата (АТФ). Катаболические процессы - дыхание, гликолиз, брожение. Основные конечные продукты катаболизма вода, СО2, аммиак, мочевина, молочная кислота.

Схема обмена веществ

Метаболизм присущ клеткам, тканям, органам и организмам.

И эти процессы связаны между собой.

АДАПТАЦИЯ

Адаптация - способность любой системы получать новую информацию для приближения своего поведения и структуры к оптимальным.

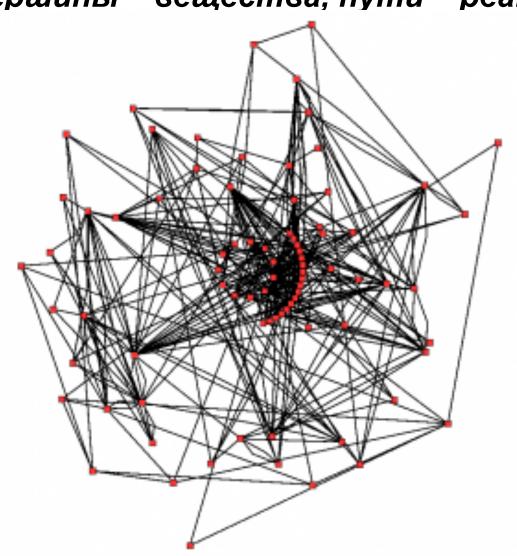
Системы адаптивны, если при изменении в их окружении или внутреннем состоянии, снижающем их эффективность в выполнении своих функций, они реагируют или откликаются, изменяя свое собственное состояние или состояние окружающей среды так, чтобы их эффективность увеличилась.

Уровни адаптации

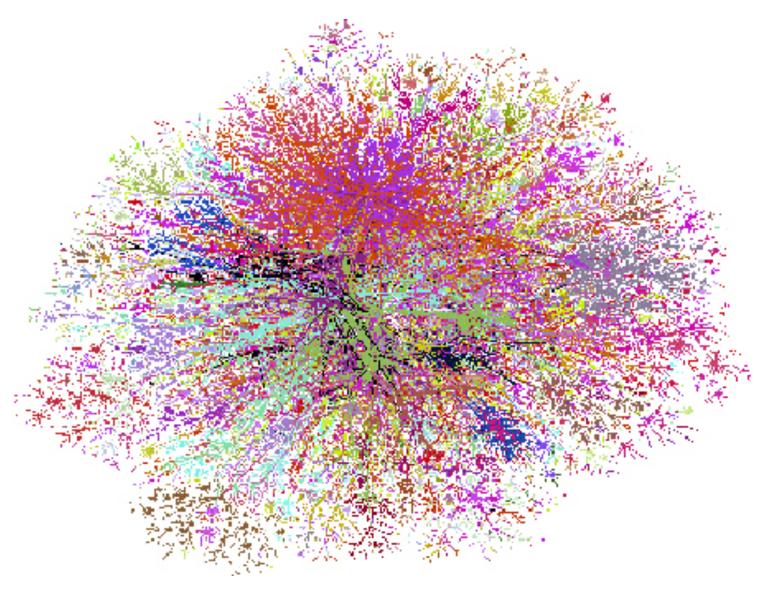
- на уровне клетки в виде функциональных или морфологических изменений;
- на уровне органа или группы клеток, имеющих одинаковую функцию;
- на уровне организма как морфологического так и функционального целого, представляющего собой совокупность всех физиологических функций, направленных на сохранение витальных функций и самой жизни.

Организм клинически здорового человека с высокими адаптивными способностями обладает значительным потенциалом саморегуляции и самовосстановления. Для поддержания здоровья ему достаточно вести здоровый образ жизни, соблюдать принципы сбалансированного питания.

«Примеры управляющих воздействий»


- (+) Глубокий сон способствует выработке в организме гормона роста, который ускоряет обмен веществ и, соответственно, сжигает калории и приводит к снижению веса
- (-) Стресс, освобождает жировые кислоты, которые *образуют бляшки на стенках сосудов* и откладываются в жир.
- (+) Голодание, ограничение питания нормализуют жизненные процессы. Продлевают жизнь.

Понимание сложных процессов требует комплексного анализа и системного подхода, при котором система исследуется не только в виде отдельных компонентов, составляющих её, но и целиком с учётом взаимосвязей между этими компонентами.


Процессы, протекающие в живых организмах, сложны и взаимосвязаны

Пример простой метаболической сети

(вершины – вещества, пути – реакции)

Пример сложной метаболической сети

Системная биология связывает процессы на молекулярном уровне с событиями на индивидуальном и популяционном уровнях

Процессы на уровне организма

ГОМЕОСТАЗ

Целостность организма — его способность сохранять жизнедеятельность на протяжении жизни и в различных условиях среды.

Целостность обеспечивается системами управления организма в борьбе с неблагоприятными условиями существования, микро и макрохищниками.

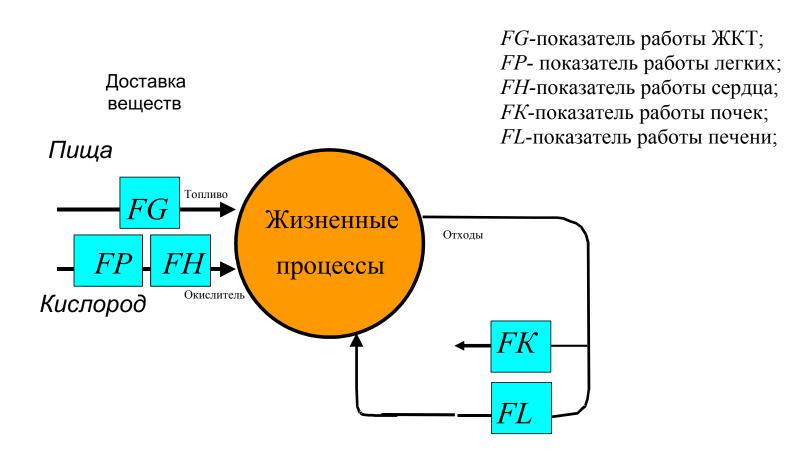
Основными характеристиками целостности являются

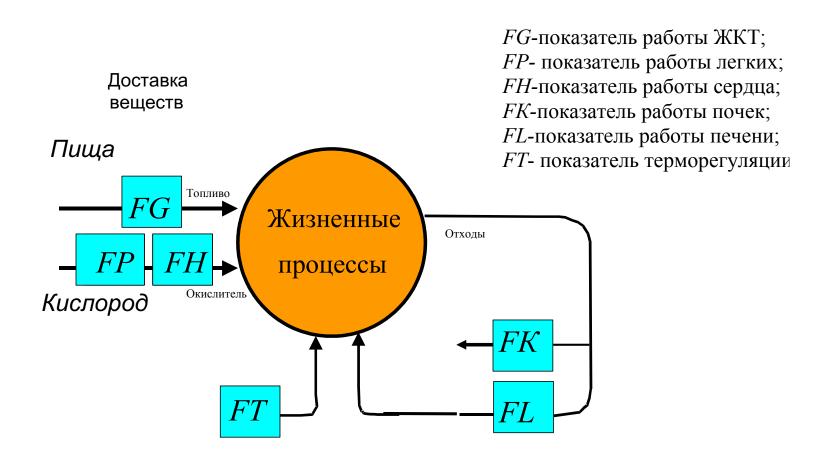
стационарность и гомеостаз.

Главной биологической целью существования организмов является передача генов в следующее поколение — оставление потомства.

Условием передачи генов в следующее поколение является стационарность на протяжении жизни. Для ее обеспечения в организме имеется специальный (пассивный) контур управления.

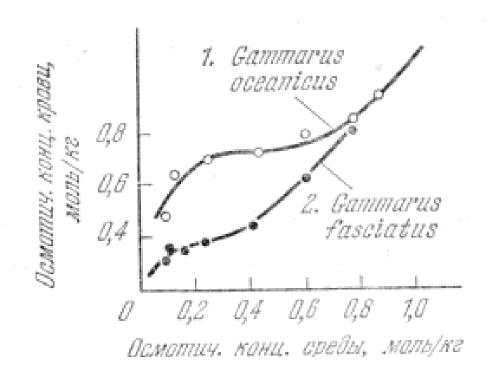
Гомеостаз – постоянство внутренней среды – создается за счет механизмов активного управления, накладывающихся на этот контур.


Гомеостаз возникает только тогда, когда он дает системе дополнительные преимущества.


СТАЦИОНАРНОСТЬ И ГОМЕОСТАЗ ПОДДЕРЖИВАЮТСЯ ЧЕРЕЗ


ЕСТЕСТВЕННЫЕ ТЕХНОЛОГИИ ОРГАНИЗМА

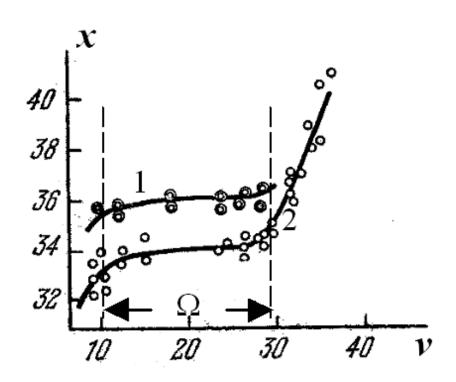
FG-показатель работы ЖКТ; FP-показатель работы лёгких; FH-показатель работы сердца;



БЛОК-СХЕМА ЕСТЕСТВЕННЫХ ТЕХНОЛОГИЙ ОРГАНИЗМА

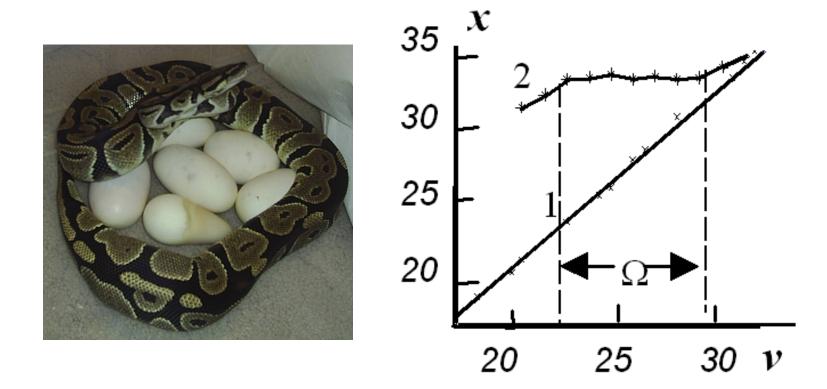
ГОМЕОСТАЗ В ПРИРОДЕ

ГОМЕОСТАЗ ШИРОКО РАСПРОСТРАНЁН В ПРИРОДЕ



Осмотический гомеостаз у бокоплавов Gammarus

ГОМЕОСТАТИЧЕСКАЯ КРИВАЯ АДАПТИРУЕТСЯ К ВНЕШНИМ УСЛОВИЯМ



Температура тела x [°C] в зависимости от среды v [°C] (1 – ночь, 2 – день).

Американский опоссум ведет ночной образ жизни

ГОМЕОСТАЗ УПРАВЛЯЕМ

Зависимость температуры тела самки питона *х* от температуры среды *v*: 1 – в обычных условиях, 2 – при производстве потомства

Самка питона способна согревать яйца, поддерживая температуру внутри колец тела за счет мышечных сокращений.

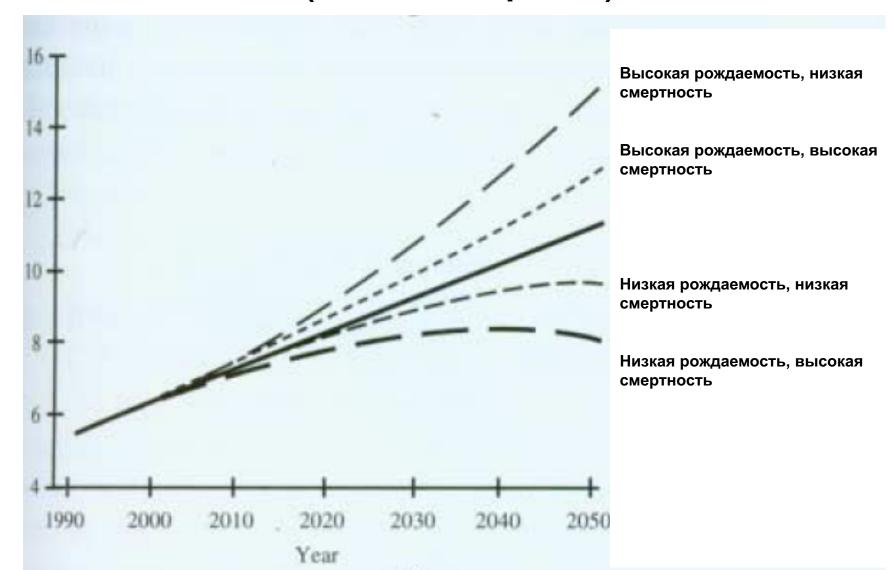
ОДНАКО, ГОМЕОСТАЗ НЕ ОБЯЗАТЕЛЕН

К животным, пользующимся преимуществами гомеостаза, относятся, в частности, теплокровные млекопитающие.

Тем не менее, даже среди млекопитающих в Африке обнаружен вид голых землекопов (Heterocephalus glaber), не обладающий температурным гомеостазом.

Живут до 30 лет, не болеют раком.

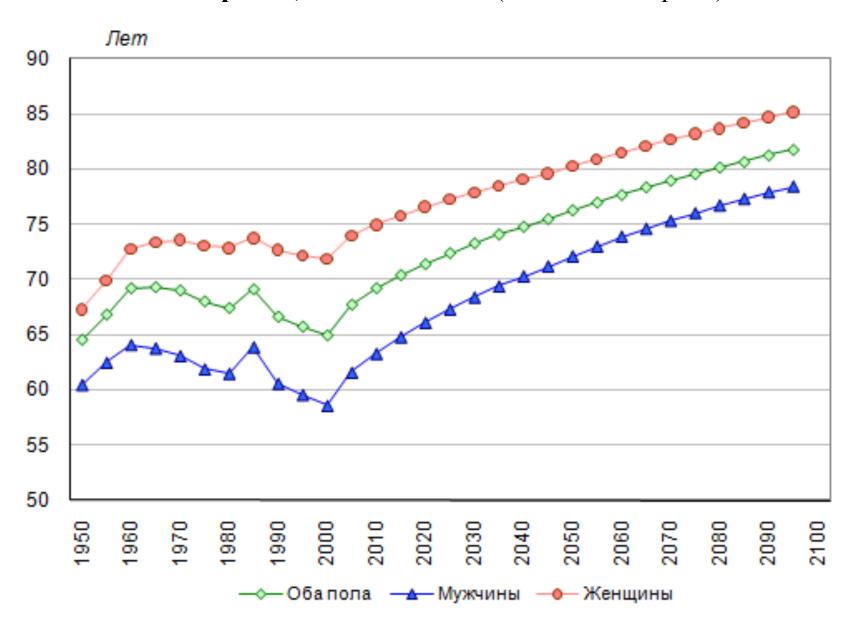
Управление здоровьем населения.


Оценка рисков для здоровья.

Медико-биологические задачи оценки рисков:

Изучение смертности в демографии Примером области, в которой оценка риска имеет жизненно важное значение является ДЕМОГРАФИЯ – изучение популяций, или населений.

ДЕМОГРАФИЯ - наука о народонаселении, изучающая воспроизводство населения, численность, структуру и расселение населения, изменения в них происходящие, причины и последствия.


Прогноз численности населения Земли (миллиарды)

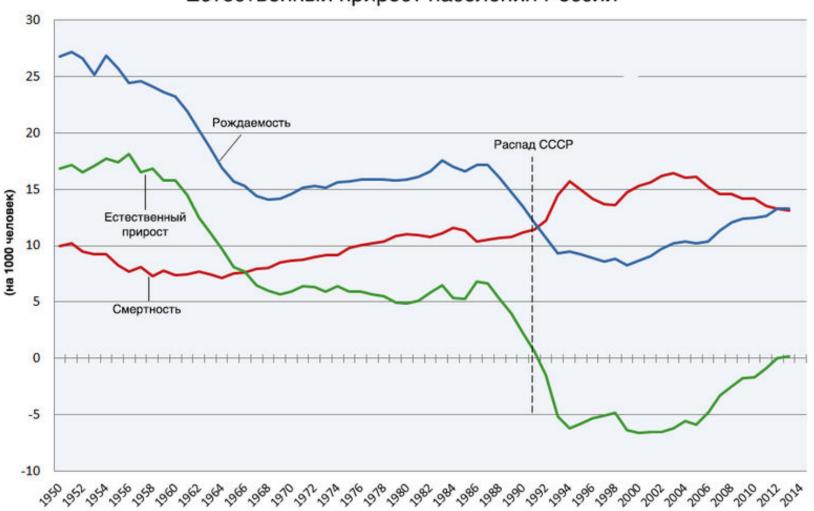
Общий ранг	Страна	Ожидаемая продолжи- тельность жизни	Мужчины (ранг)	Продолжи- тельность жизни мужчин	Женщины (ранг)	Продолжи- тельность жизни женщин
1	• Япония	84	5	80	1	87
3	Австралия	83	2	81	4	85
20	← Финляндия	81	24	78	11	84
37	Е Куба	79	37	76	36	81
38	США	79	37	76	36	81
46	— Эстония	77	84	71	36	81
88	††: Грузия	74	95	70	61	78
110	Украина	71	125	66	98	76
122	Р оссия	71	142	63	104	75
125	Узбекистан	69	117	67	123	72
151	Туркмения	63	157	60	143	67
166	Б Афганистан	60	167	58	167	61
191	Т ЦАР	51	189	50	190	52

Средняя продолжительность жизни на 2013 год (по данным BO3)

Ожидаемая продолжительность жизни при рождении, Российская Федерация, 1950-2100 годы (www.demoscope.ru)

Россия занимает 136 место в мире по продолжительности жизни мужчин, и на 91-м по средней продолжительности жизни женщин.

При этом коэффициент рождаемости в России в 2005 года, по данным Министерства здравоохранения и социального развития, составил 1,34 ребенка на одну женщину репродуктивного возраста. Чтобы ликвидировать тенденцию уменьшения численности населения, необходимо довести коэффициент рождаемости до 2,14 ребенка на одну женщину репродуктивного возраста.


Показатель смертности в России в 2005 году составил 16 умерших на 1 тысячу человек населения.

30 процентов умерших были в трудоспособном возрасте.

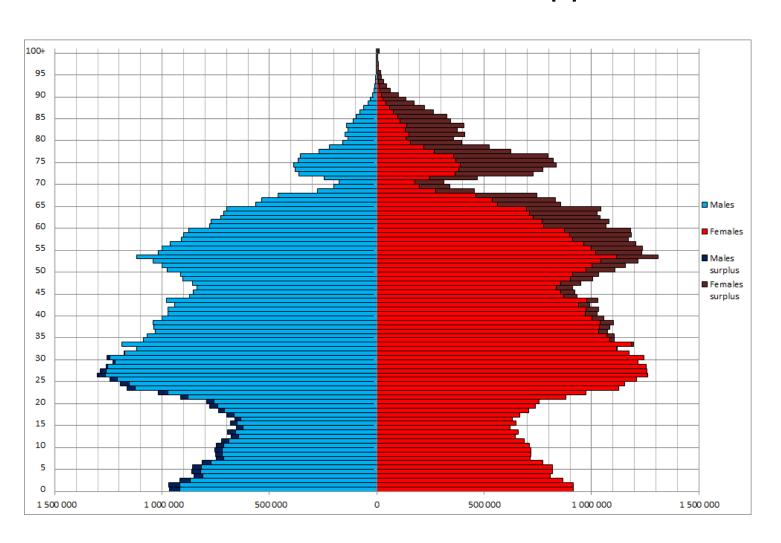
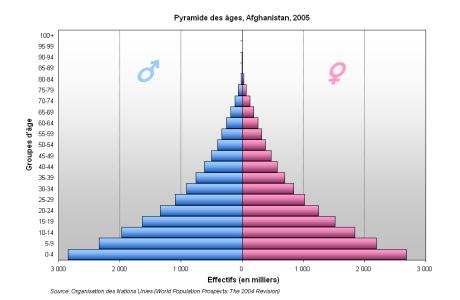
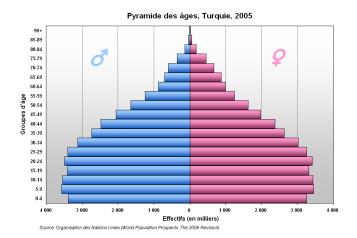
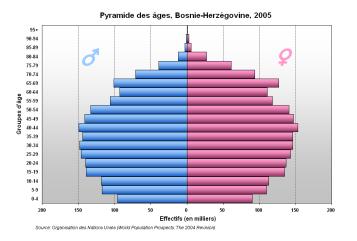

- •Большая часть умерших "по неестественным причинам" люди, покончившие жизнь самоубийством,
- •второе место занимают жертвы ДТП,
- •третья по распространенности причина смерти отравление алкоголем.

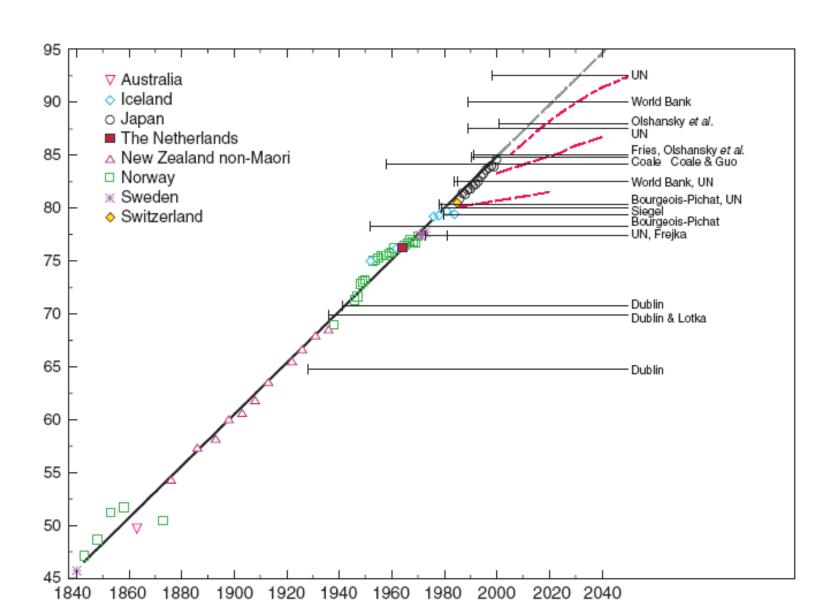
График рождаемости и смертности в РФ по годам 1950-2014

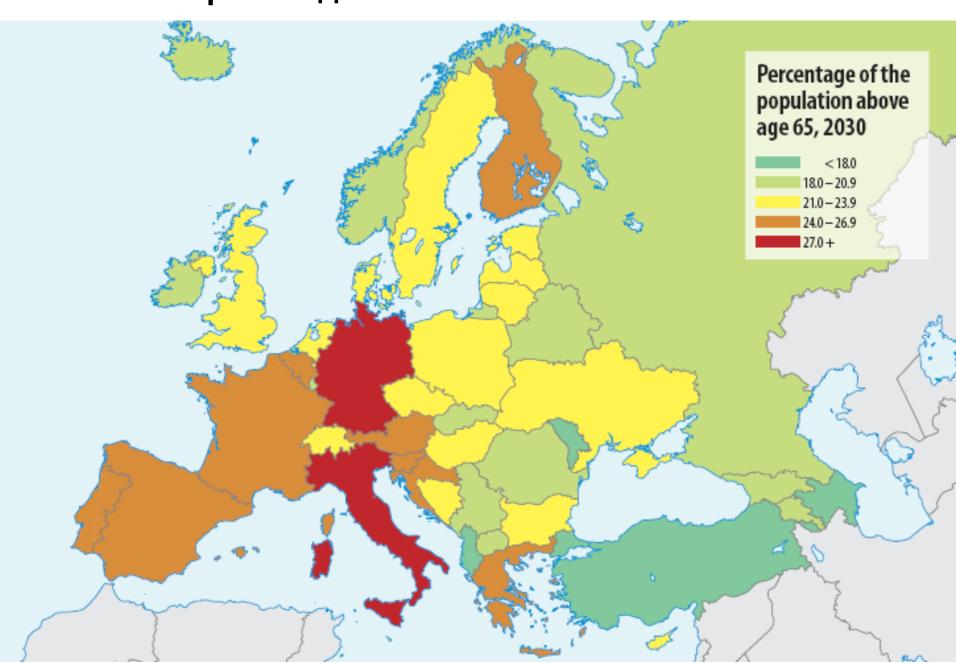

Естественный прирост населения России




Возрастно-половая пирамида населения России на 2014 год

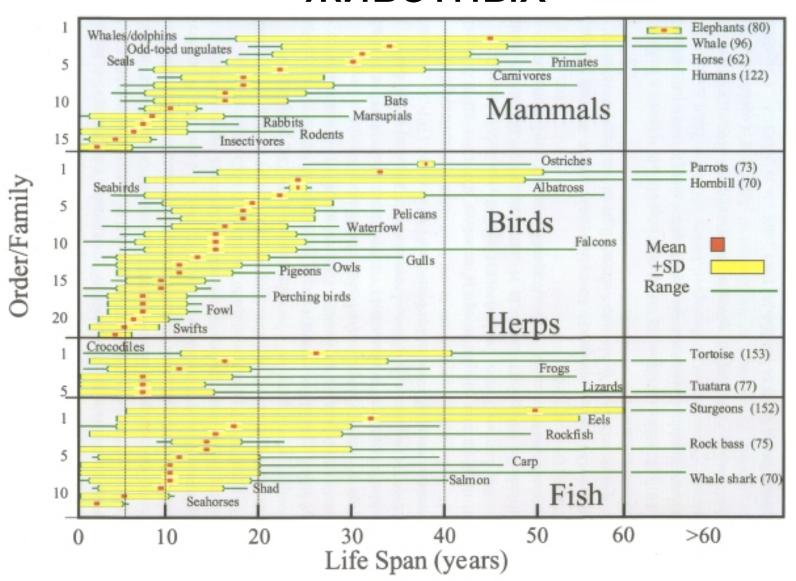
Молодая и стареющая популяции





А ЧТО ПРОИСХОДИТ В МИРЕ?

Средняя продолжительность жизни в развитых странах увеличивается со скоростью 3 месяца/год


Происходит ПОСТАРЕНИЕ населения

ВЫЗОВ XXI ВЕКА – ЗДОРОВАЯ СТАРОСТЬ

Геронтология – (от греч. geron, родительный падеж gerontos- старик) раздел медико-биологической науки, изучающий явления старения живых организмов, в том числе и человека.

Продолжительность жизни животных

Можно ли управлять продолжительностью жизни?

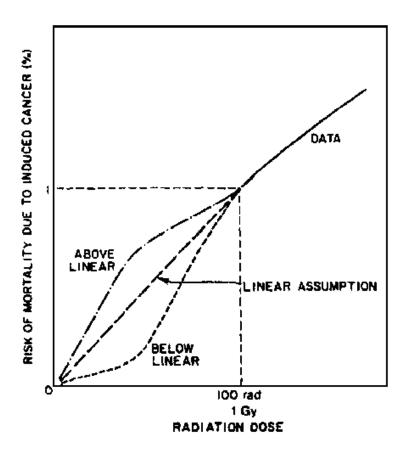
Организм	Продолжительность жизни	Типы воздействия	Максимальный наблюдаемый эффект продления жизни	
Черви	21 день	Термическое воздействие, генетические мутации	До 6 раз	
Мухи	49 дней	Термическое воздействие, гравитационное воздействие, ограничение питания, генетические мутации	До 2 раз	
Мыши	2-2.5 года	Генетические мутации, ограничение питания, химические воздействия	До 1.5 раз	
Обезьяны	22 года	Ограничение питания, химические воздействия	???	
Человек	70 лет (макс. 122 года)	Ограничение питания	???	

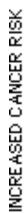
Анализ рисков

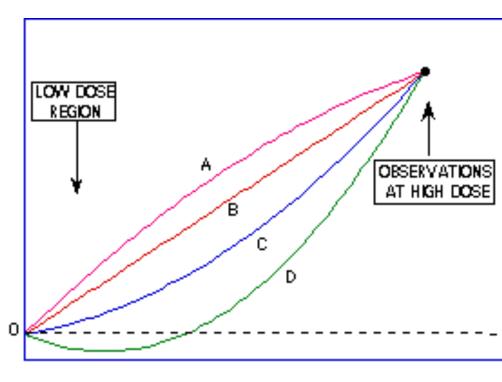
Анализ радиационных рисков для здоровья человека

Атомная бомбардировка американской авиацией японских	6, 9 августа 1945г.	Radiation Effects Research Foundation (RERF), Life Span Study	Дозы до и выше 2.0(Зв) Средняя доза 0.3(Зв)
городов Хиросима и Нагасаки			
Авария на IVэнергоблоке Чернобыльской АЭС (ныне Украина)	26 апреля 1986г.	Национальный радиационно- эпидемиологи ческий регистр (НРЭР), Чернобыльски	Дозы не выше 0.5(Зв) Средняя доза 0.1(Зв)
		е ликвидаторы	

Дозы облучения человека


Персонал атомных объектов получает за всё время работы не более 0.05(3в)


Общий усреднённый естественный радиационный фон 0.0024(3в/год)


Общий усреднённый радиационный фон в результате испытаний атомного оружия в 1963г. составлял 5% от естественного радиационного фона 0.11(m3в/год)

Сейчас упал до 0.2% от естественного радиационного фона 5.5(µ3в/год)

Моделирование радиационных рисков

RADIATION DOSE (ABOVE BACKGROUND)

За последнее время изменились тенденции и требования, выдвигаемые современной медициной и биологической наукой.

Вследствие развития вычислительной техники, телекоммуникационных технологий, создания обширных баз медицинской информации, достижений молекулярной биологии на передний край медицинской и биологической науки, а также практической медицины (клинической и здравоохранения в целом) выдвинулись задачи разработки математических средств объективной диагностики пациентов, методик поддержки доказательной медицины, процедур обработки геномных исследований, генетических, индивидуальных и популяционных данных.

В решении этих задач ключевую роль играют проблемы информатизации, интеллектуального анализа данных, построения прогностических математических моделей.

Успешное решение этих задач создаёт предпосылки к переходу к <u>персонифицированной медицине</u>, являющейся задачей мировой медицинской науки, и к повышению потенциала здоровья нации в целом.