26369

Автор(ов): 

2

Параметры публикации
Тип публикации: 
Статья в журнале/сборнике
Название: 
Trees with fixed number of pendent vertices with minimal first Zagreb Index
ISBN/ISSN: 
2303-4955
Наименование источника: 
Bulletin of International Mathematical Virtual Institute
Обозначение и номер тома: 
Vol. 3(2)
Город: 
Bloomsburg
Издательство: 
International Mathematical Virtual Institute
Год издания: 
2013
Страницы: 
161-164
Аннотация
The first Zagreb index M1 of a graph G is equal to the sum of squares of the vertex degrees of G. In a recent work [Goubko, MATCH Commun. Math. Comput. Chem. 71 (2014), 33–46], it was shown that for a tree with n_1 pendent vertices, the inequality M1 >= 9n_1−16 holds. We now provide an alternative proof of this relation, and characterize the trees for which the equality holds. http://www.imvibl.org/buletin/bulletin_imvi_3_2_2013/bulletin_imvi_3_2_2013_161_164.pdf
Библиографическая ссылка: 
Gutman I., Губко М.В. Trees with fixed number of pendent vertices with minimal first Zagreb Index // Bulletin of International Mathematical Virtual Institute. 2013. Vol. 3(2). С. 161-164.