29746

Автор(ов): 

2

Параметры публикации
Тип публикации: 
Статья в журнале/сборнике
Название: 
A Note on Minimizing Degree-Based Topological Indices for Trees with Given Number of Pendent Vertices
Наименование источника: 
MATCH Communications in Mathematical and in Computer Chemistry
Обозначение и номер тома: 
V. 72, No 3.
Город: 
Kraguevac
Издательство: 
Kraguevac University
Год издания: 
2014
Страницы: 
633-639
Аннотация
Theorem 3 in [Goubko M. Minimizing Degree-Based Topological Indices for Trees with Given Number of Pendent Vertices // MATCH Commun. Math. Comput. Chem. 2014. V. 71, No 1. P. 33-46.] claims that the second Zagreb index M2 cannot be less than 11n - 27 for a tree with n >= 8 pendent vertices. Yet, a tree exists with n = 8 vertices (the two-sided broom) violating this inequality. The reason is that the proof of Theorem 3 relays on a tacit assumption that an index-minimizing tree contains no vertices of degree 2. This assumption appears to be invalid in general. In this note we show that the inequality M2 >= 11n-27 still holds for trees with n >= 9 vertices and provide the valid proof of the (corrected) Theorem 3.
Библиографическая ссылка: 
Губко М.В., Reti T. A Note on Minimizing Degree-Based Topological Indices for Trees with Given Number of Pendent Vertices // MATCH Communications in Mathematical and in Computer Chemistry. 2014. V. 72, No 3. С. 633-639.