40155

Автор(ов): 

4

Параметры публикации
Тип публикации: 
Статья в журнале/сборнике
Название: 
Bayesian Learning of Consumer Preferences for Residential Demand Response
Электронная публикация: 
Да
ISBN/ISSN: 
2405-8963
DOI: 
10.1016/j.ifacol.2016.12.184
Наименование источника: 
IFAC-PapersOnLine
Обозначение и номер тома: 
Volume 49, Issue 32
Город: 
Amsterdam
Издательство: 
Elsevier
Год издания: 
2016
Страницы: 
24-29
Аннотация
In coming years residential consumers will face real-time electricity tariffs with energy prices varying day to day, and effective energy saving will require automation - a recommender system, which learns consumer's preferences from her actions. A consumer chooses a scenario of home appliance use to balance her comfort level and the energy bill. We propose a Bayesian learning algorithm to estimate the comfort level function from the history of appliance use. In numeric experiments with datasets generated from a simulation model of a consumer interacting with small home appliances the algorithm outperforms popular regression analysis tools. Our approach can be extended to control an air heating and conditioning system, which is responsible for up to half of a household's energy bill.
Библиографическая ссылка: 
Губко М.В., Кузнецов С.О., Незнанов А.А., Игнатов Д.И. Bayesian Learning of Consumer Preferences for Residential Demand Response // IFAC-PapersOnLine. 2016. Volume 49, Issue 32. С. 24-29.