42764

Автор(ов): 

1

Параметры публикации
Тип публикации: 
Статья в журнале/сборнике
Название: 
Maximizing Wiener index for trees with given vertex weight and degree sequences
DOI: 
10.1016/j.amc.2017.07.077
Наименование источника: 
Applied Mathematics and Computation
Обозначение и номер тома: 
316
Город: 
Amsterdam
Издательство: 
Elsevier B.V.
Год издания: 
2018
Страницы: 
102-114
Аннотация
The Wiener index is maximized over the set of trees with the given vertex weight and degree sequences. This model covers the traditional “unweighed” Wiener index, the terminal Wiener index, and the vertex distance index. It is shown that there exists an optimal caterpillar. If weights of internal vertices increase in their degrees, then an optimal caterpillar exists with weights of internal vertices on its backbone monotonously increasing from some central point to the ends of the backbone, and the same is true for pendent vertices. A tight upper bound of the Wiener index value is proposed and an efficient greedy heuristics is developed that approximates well the optimal index value. Finally, a branch and bound algorithm is built and tested for the exact solution of this NP-complete problem.
Библиографическая ссылка: 
Губко М.В. Maximizing Wiener index for trees with given vertex weight and degree sequences // Applied Mathematics and Computation. 2018. 316. С. 102-114.